Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2402301, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580291

RESUMO

4D (bio-)printing endows 3D printed (bio-)materials with multiple functionalities and dynamic properties. 4D printed materials have been recently used in biomedical engineering for the design and fabrication of biomedical devices, such as stents, occluders, microneedles, smart 3D-cell engineered microenvironments, drug delivery systems, wound closures, and implantable medical devices. However, the success of 4D printing relies on the rational design of 4D printed objects, the selection of smart materials, and the availability of appropriate types of external (multi-)stimuli. Here, this work first highlights the different types of smart materials, external stimuli, and design strategies used in 4D (bio-)printing. Then, it presents a critical review of the biomedical applications of 4D printing and discusses the future directions of biomedical research in this exciting area, including in vivo tissue regeneration studies, the implementation of multiple materials with reversible shape memory behaviors, the creation of fast shape-transformation responses, the ability to operate at the microscale, untethered activation and control, and the application of (machine learning-based) modeling approaches to predict the structure-property and design-shape transformation relationships of 4D (bio)printed constructs.

2.
Acta Biomater ; 177: 228-242, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325707

RESUMO

The Poisson's ratio and elastic modulus are two parameters determining the elastic behavior of biomaterials. While the effects of elastic modulus on the cell response is widely studied, very little is known regarding the effects of the Poisson's ratio. The micro-architecture of meta-biomaterials determines not only the Poisson's ratio but also several other parameters that also influence cell response, such as porosity, pore size, and effective elastic modulus. It is, therefore, very challenging to isolate the effects of the Poisson's ratio from those of other micro-architectural parameters. Here, we computationally design meta-biomaterials with controlled Poisson's ratios, ranging between -0.74 and +0.74, while maintaining consistent porosity, pore size, and effective elastic modulus. The 3D meta-biomaterials were additively manufactured at the micro-scale using two-photon polymerization (2PP), and were mechanically evaluated at the meso­scale. The response of murine preosteoblasts to these meta-biomaterials was then studied using in vitro cell culture models. Meta-biomaterials with positive Poisson's ratios resulted in higher metabolic activity than those with negative values. The cells could attach and infiltrate all meta-biomaterials from the bottom to the top, fully covering the scaffolds after 17 days of culture. Interestingly, the meta-biomaterials exhibited different cell-induced deformations (e.g., shrinkage or local bending) as observed via scanning electron microscopy. The outcomes of osteogenic differentiation (i.e., Runx2 immunofluorescent staining) and matrix mineralization (i.e., Alizarin red staining) assays indicated the significant potential impact of these meta-biomaterials in the field of bone tissue engineering, paving the way for the development of advanced bone meta-implants. STATEMENT OF SIGNIFICANCE: We studied the influence of Poisson's ratio on bone cell response in meta-biomaterials. While elastic modulus effects are well-studied, the impact of Poisson's ratio, especially negative values found in architected biomaterials, remains largely unexplored. The complexity arises from intertwined micro-architectural parameters, such as porosity and elastic modulus, making it challenging to isolate the Poisson's ratio. To overcome this limitation, this study employed rational computational design to create meta-biomaterials with controlled Poisson's ratios, alongside consistent effective elastic modulus, porosity, and pore size. The study reveals that two-photon polymerized 3D meta-biomaterials with positive Poisson's ratios displayed higher metabolic activity, while all the developed meta-biomaterials supported osteogenic differentiation of preosteoblasts as well as matrix mineralization. The outcomes pave the way for the development of advanced 3D bone tissue models and meta-implants.


Assuntos
Materiais Biocompatíveis , Osteogênese , Animais , Camundongos , Materiais Biocompatíveis/farmacologia , Porosidade , Engenharia Tecidual , Próteses e Implantes
3.
Adv Healthc Mater ; 13(6): e2302988, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37944591

RESUMO

Glioblastoma (GBM) is a devastating cancer of the brain with an extremely poor prognosis. While X-ray radiotherapy and chemotherapy remain the current standard, proton beam therapy is an appealing alternative as protons can damage cancer cells while sparing the surrounding healthy tissue. However, the effects of protons on in vitro GBM models at the cellular level, especially when co-cultured with endothelial cells, the building blocks of brain micro-vessels, are still unexplored. In this work, novel 3D-engineered scaffolds inspired by the geometry of brain microvasculature are designed, where GBM cells cluster and proliferate. The architectures are fabricated by two-photon polymerization (2PP), pre-cultured with endothelial cells (HUVECs), and then cultured with a human GBM cell line (U251). The micro-vessel structures enable GBM in vivo-like morphologies, and the results show a higher DNA double-strand breakage in GBM monoculture samples when compared to the U251/HUVECs co-culture, with cells in 2D featuring a larger number of DNA damage foci when compared to cells in 3D. The discrepancy in terms of proton radiation response indicates a difference in the radioresistance of the GBM cells mediated by the presence of HUVECs and the possible induction of stemness features that contribute to radioresistance and improved DNA repair.


Assuntos
Células Endoteliais , Glioblastoma , Humanos , Glioblastoma/radioterapia , Prótons , Técnicas de Cocultura , Encéfalo
4.
ACS Appl Bio Mater ; 6(7): 2562-2575, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37319268

RESUMO

Mechanical and morphological design parameters, such as stiffness or porosity, play important roles in creating orthopedic implants and bone substitutes. However, we have only a limited understanding of how the microarchitecture of porous scaffolds contributes to bone regeneration. Meta-biomaterials are increasingly used to precisely engineer the internal geometry of porous scaffolds and independently tailor their mechanical properties (e.g., stiffness and Poisson's ratio). This is motivated by the rare or unprecedented properties of meta-biomaterials, such as negative Poisson's ratios (i.e., auxeticity). It is, however, not clear how these unusual properties can modulate the interactions of meta-biomaterials with living cells and whether they can facilitate bone tissue engineering under static and dynamic cell culture and mechanical loading conditions. Here, we review the recent studies investigating the effects of the Poisson's ratio on the performance of meta-biomaterials with an emphasis on the relevant mechanobiological aspects. We also highlight the state-of-the-art additive manufacturing techniques employed to create meta-biomaterials, particularly at the micrometer scale. Finally, we provide future perspectives, particularly for the design of the next generation of meta-biomaterials featuring dynamic properties (e.g., those made through 4D printing).


Assuntos
Materiais Biocompatíveis , Substitutos Ósseos , Teste de Materiais , Porosidade , Engenharia Tecidual
5.
Polymers (Basel) ; 15(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37111964

RESUMO

The mechanical properties of two-photon-polymerised (2PP) polymers are highly dependent on the employed printing parameters. In particular, the mechanical features of elastomeric polymers, such as IP-PDMS, are important for cell culture studies as they can influence cell mechanobiological responses. Herein, we employed optical-interferometer-based nanoindentation to characterise two-photon-polymerised structures manufactured with varying laser powers, scan speeds, slicing distances, and hatching distances. The minimum reported effective Young's modulus (YM) was 350 kPa, while the maximum one was 17.8 MPa. In addition, we showed that, on average, immersion in water lowered the YM by 5.4%, a very important point as in the context of cell biology applications, the material must be employed within an aqueous environment. We also developed a printing strategy and performed a scanning electron microscopy morphological characterisation to find the smallest achievable feature size and the maximum length of a double-clamped freestanding beam. The maximum reported length of a printed beam was 70 µm with a minimum width of 1.46 ± 0.11 µm and a thickness of 4.49 ± 0.05 µm. The minimum beam width of 1.03 ± 0.02 µm was achieved for a beam length of 50 µm with a height of 3.00 ± 0.06 µm. In conclusion, the reported investigation of micron-scale two-photon-polymerized 3D IP-PDMS structures featuring tuneable mechanical properties paves the way for the use of this material in several cell biology applications, ranging from fundamental mechanobiology to in vitro disease modelling to tissue engineering.

7.
Small ; 18(49): e2204485, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36207287

RESUMO

A major obstacle in glioma research is the lack of in vitro models that can retain cellular features of glioma cells in vivo. To overcome this limitation, a 3D-engineered scaffold, fabricated by two-photon polymerization, is developed as a cell culture model system to study patient-derived glioma cells. Scanning electron microscopy, (live cell) confocal microscopy, and immunohistochemistry are employed to assess the 3D model with respect to scaffold colonization, cellular morphology, and epidermal growth factor receptor localization. Both glioma patient-derived cells and established cell lines successfully colonize the scaffolds. Compared to conventional 2D cell cultures, the 3D-engineered scaffolds more closely resemble in vivo glioma cellular features and allow better monitoring of individual cells, cellular protrusions, and intracellular trafficking. Furthermore, less random cell motility and increased stability of cellular networks is observed for cells cultured on the scaffolds. The 3D-engineered glioma scaffolds therefore represent a promising tool for studying brain cancer mechanobiology as well as for drug screening studies.


Assuntos
Receptores ErbB , Humanos , Biofísica
8.
Front Bioeng Biotechnol ; 10: 926642, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979173

RESUMO

Microglia are the resident macrophages of the central nervous system and contribute to maintaining brain's homeostasis. Current 2D "petri-dish" in vitro cell culturing platforms employed for microglia, are unrepresentative of the softness or topography of native brain tissue. This often contributes to changes in microglial morphology, exhibiting an amoeboid phenotype that considerably differs from the homeostatic ramified phenotype in healthy brain tissue. To overcome this problem, multi-scale engineered polymeric microenvironments are developed and tested for the first time with primary microglia derived from adult rhesus macaques. In particular, biomimetic 2.5D micro- and nano-pillar arrays (diameters = 0.29-1.06 µm), featuring low effective shear moduli (0.25-14.63 MPa), and 3D micro-cages (volume = 24 × 24 × 24 to 49 × 49 × 49 µm3) with and without micro- and nano-pillar decorations (pillar diameters = 0.24-1 µm) were fabricated using two-photon polymerization (2PP). Compared to microglia cultured on flat substrates, cells growing on the pillar arrays exhibit an increased expression of the ramified phenotype and a higher number of primary branches per ramified cell. The interaction between the cells and the micro-pillar-decorated cages enables a more homogenous 3D cell colonization compared to the undecorated ones. The results pave the way for the development of improved primary microglia in vitro models to study these cells in both healthy and diseased conditions.

9.
ACS Appl Mater Interfaces ; 14(18): 20778-20789, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35442634

RESUMO

Glioblastoma (GBM) is a devastating cancer of the brain with an extremely poor prognosis. For this reason, besides clinical and preclinical studies, novel in vitro models for the assessment of cancer response to drugs and radiation are being developed. In such context, three-dimensional (3D)-engineered cellular microenvironments, compared to unrealistic two-dimensional (2D) monolayer cell culture, provide a model closer to the in vivo configuration. Concerning cancer treatment, while X-ray radiotherapy and chemotherapy remain the current standard, proton beam therapy is an appealing alternative as protons can be efficiently targeted to destroy cancer cells while sparing the surrounding healthy tissue. However, despite the treatment's compelling biological and medical rationale, little is known about the effects of protons on GBM at the cellular level. In this work, we designed novel 3D-engineered scaffolds inspired by the geometry of brain blood vessels, which cover a vital role in the colonization mechanisms of GBM cells. The architectures were fabricated by two-photon polymerization (2PP), cultured with U-251 GBM cells and integrated for the first time in the context of proton radiation experiments to assess their response to treatment. We employed Gamma H2A.X as a fluorescent biomarker to identify the DNA damage induced in the cells by proton beams. The results show a higher DNA double-strand breakage in 2D cell monolayers as compared to cells cultured in 3D. The discrepancy in terms of proton radiation response could indicate a difference in the radioresistance of the GBM cells or in the rate of repair kinetics between 2D cell monolayers and 3D cell networks. Thus, these biomimetic-engineered 3D scaffolds pave the way for the realization of a benchmark tool that can be used to routinely assess the effects of proton therapy on 3D GBM cell networks and other types of cancer cells.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Terapia com Prótons , Neoplasias Encefálicas/radioterapia , Linhagem Celular Tumoral , Dano ao DNA , Glioblastoma/tratamento farmacológico , Humanos , Prótons , Radiação Ionizante , Microambiente Tumoral
10.
ACS Appl Mater Interfaces ; 14(11): 13013-13024, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35282678

RESUMO

Biomimicking biological niches of healthy tissues or tumors can be achieved by means of artificial microenvironments, where structural and mechanical properties are crucial parameters to promote tissue formation and recreate natural conditions. In this work, three-dimensional (3D) scaffolds based on woodpile structures were fabricated by two-photon polymerization (2PP) of different photosensitive polymers (IP-S and SZ2080) and hydrogels (PEGDA 700) using two different 2PP setups, a commercial one and a customized one. The structures' properties were tuned to study the effect of scaffold dimensions (gap size) and their mechanical properties on the adhesion and proliferation of bone marrow mesenchymal stem cells (BM-MSCs), which can serve as a model for leukemic diseases, among other hematological applications. The woodpile structures feature gap sizes of 25, 50, and 100 µm and a fixed beam diameter of 25 µm, to systematically study the optimal cell colonization that promotes healthy cell growth and potential tissue formation. The characterization of the scaffolds involved scanning electron microscopy and mechanical nanoindenting, while their suitability for supporting cell growth was evaluated with live/dead cell assays and multistaining 3D confocal imaging. In the mechanical assays of the hydrogel material, we observed two different stiffness ranges depending on the indentation depth. Larger gap woodpile structures coated with fibronectin were identified as the most promising scaffolds for 3D BM-MSC cellular models, showing higher proliferation rates. The results indicate that both the design and the employed materials are suitable for further assays, where retaining the BM-MSC stemness and original features is crucial, including studies focused on BM disorders such as leukemia and others. Moreover, the combination of 3D scaffold geometry and materials holds great potential for the investigation of cellular behaviors in a co-culture setting, for example, mesenchymal and hematopoietic stem cells, to be further applied in medical research and pharmacological studies.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Células da Medula Óssea , Diferenciação Celular , Técnicas de Cocultura , Hidrogéis/química , Hidrogéis/farmacologia , Polímeros/química , Polímeros/farmacologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química
11.
Front Bioeng Biotechnol ; 10: 1096054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588937

RESUMO

The biomechanical properties of the brain microenvironment, which is composed of different neural cell types, the extracellular matrix, and blood vessels, are critical for normal brain development and neural functioning. Stiffness, viscoelasticity and spatial organization of brain tissue modulate proliferation, migration, differentiation, and cell function. However, the mechanical aspects of the neural microenvironment are largely ignored in current cell culture systems. Considering the high promises of human induced pluripotent stem cell- (iPSC-) based models for disease modelling and new treatment development, and in light of the physiological relevance of neuromechanobiological features, applications of in vitro engineered neuronal microenvironments should be explored thoroughly to develop more representative in vitro brain models. In this context, recently developed biomaterials in combination with micro- and nanofabrication techniques 1) allow investigating how mechanical properties affect neural cell development and functioning; 2) enable optimal cell microenvironment engineering strategies to advance neural cell models; and 3) provide a quantitative tool to assess changes in the neuromechanobiological properties of the brain microenvironment induced by pathology. In this review, we discuss the biological and engineering aspects involved in studying neuromechanobiology within scaffold-free and scaffold-based 2D and 3D iPSC-based brain models and approaches employing primary lineages (neural/glial), cell lines and other stem cells. Finally, we discuss future experimental directions of engineered microenvironments in neuroscience.

12.
Adv Mater ; 33(30): e2008082, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34121234

RESUMO

The design of advanced functional devices often requires the use of intrinsically curved geometries that belong to the realm of non-Euclidean geometry and remain a challenge for traditional engineering approaches. Here, it is shown how the simple deflection of thick meta-plates based on hexagonal cellular mesostructures can be used to achieve a wide range of intrinsic (i.e., Gaussian) curvatures, including dome-like and saddle-like shapes. Depending on the unit cell structure, non-auxetic (i.e., positive Poisson ratio) or auxetic (i.e., negative Poisson ratio) plates can be obtained, leading to a negative or positive value of the Gaussian curvature upon bending, respectively. It is found that bending such meta-plates along their longitudinal direction induces a curvature along their transverse direction. Experimentally and numerically, it is shown how the amplitude of this induced curvature is related to the longitudinal bending and the geometry of the meta-plate. The approach proposed here constitutes a general route for the rational design of advanced functional devices with intrinsically curved geometries. To demonstrate the merits of this approach, a scaling relationship is presented, and its validity is demonstrated by applying it to 3D-printed microscale meta-plates. Several applications for adaptive optical devices with adjustable focal length and soft wearable robotics are presented.

13.
ACS Appl Bio Mater ; 4(12): 8443-8455, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-35005920

RESUMO

In nature, cells exist in three-dimensional (3D) microenvironments with topography, stiffness, surface chemistry, and biological factors that strongly dictate their phenotype and behavior. The cellular microenvironment is an organized structure or scaffold that, together with the cells that live within it, make up living tissue. To mimic these systems and understand how the different properties of a scaffold, such as adhesion, proliferation, or function, influence cell behavior, we need to be able to fabricate cellular microenvironments with tunable properties. In this work, the nanotopography and functionality of scaffolds for cell culture were modified by coating 3D printed materials (DS3000 and poly(ethylene glycol)diacrylate, PEG-DA) with cellulose nanocrystals (CNCs). This general approach was demonstrated on a variety of structures designed to incorporate macro- and microscale features fabricated using photopolymerization and 3D printing techniques. Atomic force microscopy was used to characterize the CNC coatings and showed the ability to tune their density and in turn the surface nanoroughness from isolated nanoparticles to dense surface coverage. The ability to tune the density of CNCs on 3D printed structures could be leveraged to control the attachment and morphology of prostate cancer cells. It was also possible to introduce functionalization onto the surface of these scaffolds, either by directly coating them with CNCs grafted with the functionality of interest or with a more general approach of functionalizing the CNCs after coating using biotin-streptavidin coupling. The ability to carefully tune the nanostructure and functionalization of different 3D-printable materials is a step forward to creating in vitro scaffolds that mimic the nanoscale features of natural microenvironments, which are key to understanding their impact on cells and developing artificial tissues.


Assuntos
Celulose , Nanopartículas , Celulose/química , Hidrogéis/química , Nanopartículas/química , Impressão Tridimensional , Alicerces Teciduais/química
14.
RSC Adv ; 11(28): 16849-16859, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35479690

RESUMO

The ability to tune the localised surface plasmon resonance (LSPR) behaviour of metal nanostructures has great importance for many optical sensor applications such as metal (plasmon) enhanced fluorescence spectroscopy and surface-enhanced Raman scattering (SERS). In this paper, we used Aerosol Direct Writing (ADW) to selectively deposit fine gold nanoparticles (AuNPs) patterns. A low-temperature thermal post-treatment (below 200 °C) provides enough energy to merge and transform AuNPs into larger features significantly different from non-thermally treated samples. The optical behaviour of non-treated and thermally treated AuNP films was investigated by photoluminescence (PL) spectroscopy. The PL measurements showed a red-shift, compared to bulk gold, using 488 nm and 514 nm laser excitation, and a blue-shift using 633 nm laser excitation. The thermal post-treatment leads to a further blue-shift compared to non-treated samples in the presence of both 514 and 633 nm laser. Finally, the AuNPs patterns were employed as a SERS-active substrate to detect low-concentrated (10-8 M) rhodamine B. This method's ability to selectively deposit 3D gold nanostructures and tune their optical behaviour through a low-temperature thermal treatment allows optimisation of the optical response and enhancement of the Raman signal for specific bio-analytes.

15.
Neural Regen Res ; 15(4): 759-768, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31638101

RESUMO

Understanding the mechanisms underlying cell-surface interaction is of fundamental importance for the rational design of scaffolds aiming at tissue engineering, tissue repair and neural regeneration applications. Here, we examined patterns of neuroblastoma cells cultured in three-dimensional polymeric scaffolds obtained by two-photon lithography. Because of the intrinsic resolution of the technique, the micrometric cylinders composing the scaffold have a lateral step size of ~200 nm, a surface roughness of around 20 nm, and large values of fractal dimension approaching 2.7. We found that cells in the scaffold assemble into separate groups with many elements per group. After cell wiring, we found that resulting networks exhibit high clustering, small path lengths, and small-world characteristics. These values of the topological characteristics of the network can potentially enhance the quality, quantity and density of information transported in the network compared to equivalent random graphs of the same size. This is one of the first direct observations of cells developing into 3D small-world networks in an artificial matrix.

16.
Bioengineering (Basel) ; 6(4)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847117

RESUMO

The realization of biomimetic microenvironments for cell biology applications such as organ-on-chip, in vitro drug screening, and tissue engineering is one of the most fascinating research areas in the field of bioengineering. The continuous evolution of additive manufacturing techniques provides the tools to engineer these architectures at different scales. Moreover, it is now possible to tailor their biomechanical and topological properties while taking inspiration from the characteristics of the extracellular matrix, the three-dimensional scaffold in which cells proliferate, migrate, and differentiate. In such context, there is therefore a continuous quest for synthetic and nature-derived composite materials that must hold biocompatible, biodegradable, bioactive features and also be compatible with the envisioned fabrication strategy. The structure of the current review is intended to provide to both micro-engineers and cell biologists a comparative overview of the characteristics, advantages, and drawbacks of the major 3D printing techniques, the most promising biomaterials candidates, and the trade-offs that must be considered in order to replicate the properties of natural microenvironments.

17.
Brain Res Bull ; 152: 202-211, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31348979

RESUMO

The development of cellular microenvironments suitable for neural tissue engineering purposes involves a plethora of research fields ranging from cell biology to biochemistry, neurosciences, physics, nanotechnology, mechanobiology. In the last two decades, this multi-disciplinary activity has led to the emergence of numerous strategies to create architectures capable of reproducing the topological, biochemical and mechanical properties of the extracellular matrix present in the central (CNS) and peripheral nervous system (PNS). Some of these approaches have succeeded in inducing the functional recovery of damaged areas in the CNS and the PNS to address the current lack of effective medical treatments for this type of injury. In this review, we analyze recent developments in the realization of two-dimensional and three-dimensional neuronal scaffolds following either top-down or bottom-up approaches. After providing an overview of the different fabrication techniques employed for tailoring the biomaterials, we draw on specific examples to describe the major features of the developed approaches. We then conclude with prospective proof of concept studies on guiding scaffolds and regenerative models on macro-scale brain implants targeting neural regeneration.


Assuntos
Regeneração Nervosa/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais/tendências , Animais , Materiais Biocompatíveis , Sistema Nervoso Central/fisiologia , Matriz Extracelular/fisiologia , Humanos , Sistema Nervoso Periférico/fisiologia , Medicina Regenerativa/métodos , Células-Tronco/metabolismo
18.
ACS Appl Mater Interfaces ; 11(32): 28631-28640, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31334634

RESUMO

The development of advanced techniques of fabrication of three-dimensional (3D) microenvironments for the study of cell growth and proliferation has become one of the major motivations of material scientists and bioengineers in the past decade. Here, we present a novel residueless 3D structuration technique of poly(dimethylsiloxane) (PDMS) by water-in-PDMS emulsion casting and subsequent curing process in temperature-/pressure-controlled environment. Scanning electron microscopy and X-ray microcomputed tomography allowed us to investigate the impact of those parameters on the microarchitecture of the porous structure. We demonstrated that the optimized emulsion casting process gives rise to large-scale and highly interconnected network with pore size ranging from 500 µm to 1.5 mm that turned out to be nicely adapted to 3D cell culture. Experimental cell culture validations were performed using SaOS-2 (osteosarcoma) cell lines. Epifluorescence and deep penetration imaging techniques as two-photon confocal microscopy unveiled information about cell morphology and confirmed a homogeneous cell proliferation and spatial distribution in the 3D porous structure within an available volume larger than 1 cm3. These results open alternative scenarios for the fabrication and integration of porous scaffolds for the development of 3D cell culture platforms.


Assuntos
Microambiente Celular , Teste de Materiais , Silicones/química , Linhagem Celular Tumoral , Emulsões , Humanos , Porosidade , Alicerces Teciduais , Água
19.
Small ; 13(27)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28558136

RESUMO

The realization of 3D architectures for the study of cell growth, proliferation, and differentiation is a task of fundamental importance for both technological and biological communities involved in the development of biomimetic cell culture environments. Here we report the fabrication of 3D freestanding scaffolds, realized by multiphoton direct laser writing and seeded with neuroblastoma cells, and their multitechnique characterization using advanced 3D fluorescence imaging approaches. The high accuracy of the fabrication process (≈200 nm) allows a much finer control of the micro- and nanoscale features compared to other 3D printing technologies based on fused deposition modeling, inkjet printing, selective laser sintering, or polyjet technology. Scanning electron microscopy (SEM) provides detailed insights about the morphology of both cells and cellular interconnections around the 3D architecture. On the other hand, the nature of the seeding in the inner core of the 3D scaffold, inaccessible by conventional SEM imaging, is unveiled by light sheet fluorescence microscopy and multiphoton confocal imaging highlighting an optimal cell colonization both around and within the 3D scaffold as well as the formation of long neuritic extensions. The results open appealing scenarios for the use of the developed 3D fabrication/3D imaging protocols in several neuroscientific contexts.


Assuntos
Materiais Biocompatíveis/química , Imageamento Tridimensional/métodos , Polímeros/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Linhagem Celular Tumoral , Humanos , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência
20.
ACS Appl Mater Interfaces ; 7(37): 20875-84, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26306595

RESUMO

Amyloid ß (Aß) peptides are the main constituents of Alzheimer's amyloid plaques in the brain. Here we report how the unique microfluidic flows exerted by droplets sitting on superhydrophobic surfaces can influence the aggregation mechanisms of several Aß fragments by boosting their fibril self-assembly. Aß(25-35), Aß(1-40), and Aß(12-28) were dried both on flat hydrophilic surfaces (contact angle (CA) = 37.3°) and on nanostructured superhydrophobic ones (CA = 175.8°). By embedding nanoroughened surfaces on top of highly X-ray transparent Si3N4 membranes, it was possible to probe the solid residues by raster-scan synchrotron radiation X-ray microdiffraction (µXRD). As compared to residues obtained on flat Si3N4 membranes, a general enhancement of fibrillar material was detected for all Aß fragments dried on superhydrophobic surfaces, with a particular emphasis on the shorter ones. Indeed, both Aß(25-35) and Aß(12-28) showed a marked crystalline cross-ß phase with varying fiber textures. The homogeneous evaporation rate provided by these nanostructured supports, and the possibility to use transparent membranes, can open a wide range of in situ X-ray and spectroscopic characterizations of amyloidal peptides involved in neurodegenerative diseases and for the fabrication of amyloid-based nanodevices.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Interações Hidrofóbicas e Hidrofílicas , Dessecação , Membranas Artificiais , Imagem Óptica , Compostos de Silício/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA