Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Astrobiology ; 19(8): 1018-1036, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30653337

RESUMO

We describe the results obtained on a set of organic samples that have been part of the experiment "Photochemistry on the Space Station (PSS)" on the EXPOSE-R2 mission conducted on the EXPOSE-R facility situated outside the International Space Station (ISS). The organic samples were prepared in the Catania laboratory by 200 keV He+ irradiation of N2:CH4:CO icy mixtures deposited at 17 K, on vacuum UV (VUV) transparent MgF2 windows. This organic material contains different chemical groups, including triple CN bonds, that are thought to be of interest for astrobiology. It is widely accepted that materials similar to that produced in the laboratory by ion irradiation of frozen ices could be present in some astrophysical environments such as comets. Once expelled from comets, these materials are exposed to solar radiation during their interplanetary journey. In the young Solar System, some of these processed materials could have reached early Earth and contributed to its chemical and prebiotic evolution. The samples were exposed for 16 months to the unshielded solar UV photons. It was found that, if an interplanetary dust particle (IDP) containing organic material (50% vol) is large enough (>20-30 µm), relevant chemical groups, such as those containing the CN triple bond, can survive for many years (>104 years) in the interplanetary medium.


Assuntos
Poeira/análise , Meio Ambiente Extraterreno , Meteoroides , Compostos Orgânicos/análise , Fotólise , Astronave , Hélio/análise , Análise Espectral , Fatores de Tempo
2.
Phys Rev Lett ; 111(5): 053201, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23952395

RESUMO

Any evolving system can change state via thermal mechanisms (hopping a barrier) or via quantum tunneling. Most of the time, efficient classical mechanisms dominate at high temperatures. This is why an increase of the temperature can initiate the chemistry. We present here an experimental investigation of O-atom diffusion and reactivity on water ice. We explore the 6-25 K temperature range at submonolayer surface coverages. We derive the diffusion temperature law and observe the transition from quantum to classical diffusion. Despite the high mass of O, quantum tunneling is efficient even at 6 K. As a consequence, the solid-state astrochemistry of cold regions should be reconsidered and should include the possibility of forming larger organic molecules than previously expected.

3.
J Chem Phys ; 137(23): 234706, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23267497

RESUMO

The formation of the first monolayer of water molecules on bare dust grains is of primary importance to understand the growth of the icy mantles that cover dust in the interstellar medium. In this work, we explore experimentally the formation of water molecules from O(2) + D reaction on bare silicate surfaces that simulates the grains present in the diffuse interstellar clouds at visual extinctions (A(V) < 3 mag). For comparison, we also study the formation of water molecules on surfaces covered with amorphous water ice representing the dense clouds (A(V) ≥ 3 mag). Our studies focus on the formation of water molecules in the sub-monolayer and monolayer regimes using reflection absorption infrared spectroscopy and temperature-programmed desorption techniques. We provide the fractions of the products, such as D(2)O and D(2)O(2) molecules formed on three astrophysically relevant surfaces held at 10 K (amorphous olivine-type silicate, porous amorphous water ice, and nonporous amorphous water ice). Our results showed that the formation of D(2)O molecules occurs with an efficiency of about 55%-60% on nonporous amorphous water ice and about 18% on bare silicate grains surfaces. We explain the low efficiency of D(2)O water formation on the silicate surfaces by the desorption upon formation of certain products once the reaction occurs between O(2) and D atoms on the surface. A kinetic model taking into account the chemical desorption of newly formed water supports our conclusions.

4.
J Chem Phys ; 133(10): 104507, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20849178

RESUMO

Using the King and Wells method, we present experimental data on the dependence of the sticking of molecular hydrogen and deuterium on the beam temperature onto nonporous amorphous solid water ice surfaces of interstellar interest. A statistical model that explains the isotopic effect and the beam temperature behavior of our data is proposed. This model gives an understanding of the discrepancy between all known experimental results on the sticking of molecular hydrogen. Moreover, it is able to fit the theoretical results of Buch et al. [Astrophys. J. 379, 647 (1991)] on atomic hydrogen and deuterium. For astrophysical applications, an analytical formula for the sticking coefficients of H, D, H(2), D(2), and HD in the case of a gas phase at thermal equilibrium is also provided at the end of the article.


Assuntos
Gases/química , Hidrogênio/química , Temperatura , Água/química , Deutério/química , Modelos Estatísticos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...