Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 15(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38535356

RESUMO

Both palm weevils, the South American (Rhynchophorus palmarum) (SAPW) and the red palm weevil (R. ferrugineus, RPW), are present in South America, affecting commercial, ornamental, and native palms. These pests oviposit and thrive on selected Arecaceae. R. palmarum mainly infests coconut (Cocos nucifera), oil palms (Elaeis guineensis), and other ornamental and native palms in America, causing a significant social impact on growers. The weevils fulfill a significant ectosymbiotic macro- and microorganism role in the first period of larval development, worsening the damage which, during this period, is not yet apparent. Palm protection in the Brazilian context suggests the use of indigenous agents for microbiological biocontrol. This research identifies three Brazilian Beauveria bassiana isolates: CVAD01, CVAD02, and CVAD06. The results suggest that the strain's impact on R. palmarum can also be compared with that of the commercial strain Beauveria bassiana. Phylogenetic analysis allowed the delimitation of species of Beauveria (Hypocreales). Pathogenicity tests caused significant mortality in R. palmarum. The isolates CVAD01, CVAD02, and CVADO6 showed high pathogenicity between 7 and 21 days, with mortality rates between 90 and 100%, suggesting that they may be effective biological control agents of R. palmarum in the field when used, within available means, to mitigate the impact of R. palmarum and R. ferrugineus in South America.

2.
Nanomedicine (Lond) ; 18(23): 1651-1668, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37929694

RESUMO

Background: Elevated expression of CAV1 in breast cancer increases tumor progression. Extracellular vesicles (EVs) from CAV1-expressing MDA-MB-231 breast cancer cells contain Tenascin C (TNC), but the relevance of TNC remained to be defined. Methods: EVs were characterized by nanotracking analysis, microscopy and western blotting. The uptake of EVs by cells was studied using flow cytometry. The effects of EVs on breast cancer cells were tested in migration, invasion, colony formation and in vivo assays. Results: EVs were taken up by cells; however, only those containing TNC promoted invasiveness. In vivo, EVs lacking TNC ceased to promote tumor growth. Conclusion: CAV1 and TNC contained in breast cancer cell-derived EVs were identified as proteins that favor progression of breast cancer.


Caveolin-1 (CAV1) is a protein that in breast cancer increases with disease progression. Extracellular vesicles (EVs) from breast cancer cells with CAV1 also contain Tenascin C (TNC) protein, but the importance of TNC remained to be defined. EVs were identified by size, microscopy and protein analysis. The effects of EVs on breast cancer cells were studied using cells and experiments in animals. CAV1 expression promotes TNC inclusion into EVs, which increased the aggressiveness of recipient breast cancer cells. In animals, only EVs with TNC increased features associated with cancer spread, while EVs lacking TNC reduced tumor growth.


Assuntos
Neoplasias da Mama , Caveolina 1 , Vesículas Extracelulares , Tenascina , Humanos , Linhagem Celular Tumoral , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caveolina 1/metabolismo , Vesículas Extracelulares/metabolismo , Tenascina/metabolismo , Animais , Camundongos , Camundongos SCID , Progressão da Doença
3.
Biomater Sci ; 11(20): 6801-6822, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37622217

RESUMO

An important challenge in tissue engineering is the regeneration of functional articular cartilage (AC). In the field, biomimetic hydrogels are being extensively studied as scaffolds that recapitulate microenvironmental features or as mechanical supports for transplanted cells. New advanced hydrogel formulations based on salmon methacrylate gelatin (sGelMA), a cold-adapted biomaterial, are presented in this work. The psychrophilic nature of this biomaterial provides rheological advantages allowing the fabrication of scaffolds with high concentrations of the biopolymer and high mechanical strength, suitable for formulating injectable hydrogels with high mechanical strength for cartilage regeneration. However, highly intricate cell-laden scaffolds derived from highly concentrated sGelMA solutions could be deleterious for cells and scaffold remodeling. On this account, the current study proposes the use of sGelMA supplemented with a mesophilic sacrificial porogenic component. The cytocompatibility of different sGelMA-based formulations is tested through the encapsulation of osteoarthritic chondrocytes (OACs) and stimulated to synthesize extracellular matrix (ECM) components in vitro and in vivo. The sGelMA-derived scaffolds reach high levels of stiffness, and the inclusion of porogens impacts positively the scaffold degradability and molecular diffusion, improved fitness of OACs, increased the expression of cartilage-related genes, increased glycosaminoglycan (GAG) synthesis, and improved remodeling toward cartilage-like tissues. Altogether, these data support the use of sGelMA solutions in combination with mammalian solid gelatin beads for highly injectable formulations for cartilage regeneration, strengthening the importance of the balance between mechanical properties and remodeling capabilities.


Assuntos
Cartilagem Articular , Gelatina , Animais , Porosidade , Condrócitos/transplante , Engenharia Tecidual , Hidrogéis , Materiais Biocompatíveis , Regeneração , Alicerces Teciduais , Mamíferos
4.
Biomed Mater ; 18(4)2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37167997

RESUMO

Although there have been many advances in injectable hydrogels as scaffolds for tissue engineering or as payload-containing vehicles, the lack of adequate microporosity for the desired cell behavior, tissue integration, and successful tissue generation remains an important drawback. Herein, we describe an effective porous injectable system that allowsin vivoformation of pores through conventional syringe injection at room temperature. This system is based on the differential melting profiles of photocrosslinkable salmon gelatin and physically crosslinked porogens of porcine gelatin (PG), in which PG porogens are solid beads, while salmon methacrylamide gelatin remains liquid during the injection procedure. After injection and photocrosslinking, the porogens were degraded in response to the physiological temperature, enabling the generation of a homogeneous porous structure within the hydrogel. The resultant porogen-containing formulations exhibited controlled gelation kinetics within a broad temperature window (18.5 ± 0.5-28.8 ± 0.8 °C), low viscosity (133 ± 1.4-188 ± 16 cP), low force requirements for injectability (17 ± 0.3-39 ± 1 N), robust mechanical properties after photo-crosslinking (100.9 ± 3.4-332 ± 13.2 kPa), and favorable cytocompatibility (>70% cell viability). Remarkably,in vivosubcutaneous injection demonstrated the suitability of the system with appropriate viscosity and swift crosslinking to generate porous hydrogels. The resulting injected porous constructs showed favorable biocompatibility and facilitated cell infiltration for desirable potential tissue remodeling. Finally, the porogen-containing formulations exhibited favorable handling, easy deposition, and good shape fidelity when used as bioinks in 3D bioprinting technology. This injectable porous system serves as a platform for various biomedical applications, thereby inspiring future advances in cell therapy and tissue engineering.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Gelatina/química , Porosidade , Materiais Biocompatíveis/química , Hidrogéis/química , Impressão Tridimensional
5.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108653

RESUMO

For biomedical applications, gelatin is usually modified with methacryloyl groups to obtain gelatin methacryloyl (GelMA), which can be crosslinked by a radical reaction induced by low wavelength light to form mechanically stable hydrogels. The potential of GelMA hydrogels for tissue engineering has been well established, however, one of the main disadvantages of mammalian-origin gelatins is that their sol-gel transitions are close to room temperature, resulting in significant variations in viscosity that can be a problem for biofabrication applications. For these applications, cold-water fish-derived gelatins, such as salmon gelatin, are a good alternative due to their lower viscosity, viscoelastic and mechanical properties, as well as lower sol-gel transition temperatures, when compared with mammalian gelatins. However, information regarding GelMA (with special focus on salmon GelMA as a model for cold-water species) molecular conformation and the effect of pH prior to crosslinking, which is key for fabrication purposes since it will determine final hydrogel's structure, remains scarce. The aim of this work is to characterize salmon gelatin (SGel) and salmon methacryloyl gelatin (SGelMA) molecular configuration at two different acidic pHs (3.6 and 4.8) and to compare them to commercial porcine gelatin (PGel) and methacryloyl porcine gelatin (PGelMA), usually used for biomedical applications. Specifically, we evaluated gelatin and GelMA samples' molecular weight, isoelectric point (IEP), their molecular configuration by circular dichroism (CD), and determined their rheological and thermophysical properties. Results showed that functionalization affected gelatin molecular weight and IEP. Additionally, functionalization and pH affected gelatin molecular structure and rheological and thermal properties. Interestingly, the SGel and SGelMA molecular structure was more sensitive to pH changes, showing differences in gelation temperatures and triple helix formation than PGelMA. This work suggests that SGelMA presents high tunability as a biomaterial for biofabrication, highlighting the importance of a proper GelMA molecular configuration characterization prior to hydrogel fabrication.


Assuntos
Gelatina , Engenharia Tecidual , Animais , Gelatina/química , Temperatura de Transição , Viscosidade , Suspensões , Engenharia Tecidual/métodos , Metacrilatos/química , Salmão , Hidrogéis/química , Conformação Molecular , Água , Mamíferos
6.
Microorganisms ; 11(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36838405

RESUMO

This study focuses on interacting with insects and their ectosymbiont (lato sensu) microorganisms for environmentally safe plant production and protection. Some cases help compare ectosymbiont microorganisms that are insect-borne, -driven, or -spread relevant to endosymbionts' behaviour. Ectosymbiotic bacteria can interact with insects by allowing them to improve the value of their pabula. In addition, some bacteria are essential for creating ecological niches that can host the development of pests. Insect-borne plant pathogens include bacteria, viruses, and fungi. These pathogens interact with their vectors to enhance reciprocal fitness. Knowing vector-phoront interaction could considerably increase chances for outbreak management, notably when sustained by quarantine vector ectosymbiont pathogens, such as the actual Xylella fastidiosa Mediterranean invasion episode. Insect pathogenic viruses have a close evolutionary relationship with their hosts, also being highly specific and obligate parasites. Sixteen virus families have been reported to infect insects and may be involved in the biological control of specific pests, including some economic weevils. Insects and fungi are among the most widespread organisms in nature and interact with each other, establishing symbiotic relationships ranging from mutualism to antagonism. The associations can influence the extent to which interacting organisms can exert their effects on plants and the proper management practices. Sustainable pest management also relies on entomopathogenic fungi; research on these species starts from their isolation from insect carcasses, followed by identification using conventional light or electron microscopy techniques. Thanks to the development of omics sciences, it is possible to identify entomopathogenic fungi with evolutionary histories that are less-shared with the target insect and can be proposed as pest antagonists. Many interesting omics can help detect the presence of entomopathogens in different natural matrices, such as soil or plants. The same techniques will help localize ectosymbionts, localization of recesses, or specialized morphological adaptation, greatly supporting the robust interpretation of the symbiont role. The manipulation and modulation of ectosymbionts could be a more promising way to counteract pests and borne pathogens, mitigating the impact of formulates and reducing food insecurity due to the lesser impact of direct damage and diseases. The promise has a preventive intent for more manageable and broader implications for pests, comparing what we can obtain using simpler, less-specific techniques and a less comprehensive approach to Integrated Pest Management (IPM).

7.
Biomacromolecules ; 24(1): 150-165, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36542545

RESUMO

The increasing demand for tissue replacement has encouraged scientists worldwide to focus on developing new biofabrication technologies. Multimaterials/cells printed with stringent resolutions are necessary to address the high complexity of tissues. Advanced inkjet 3D printing can use multimaterials and attain high resolution and complexity of printed structures. However, a decisive yet limiting aspect of translational 3D bioprinting is selecting the befitting material to be used as bioink; there is a complete lack of cytoactive bioinks with adequate rheological, mechanical, and reactive properties. This work strives to achieve the right balance between resolution and cell support through methacrylamide functionalization of a psychrophilic gelatin and new fluorosurfactants used to engineer a photo-cross-linkable and immunoevasive bioink. The syntonized parameters following optimal formulation conditions allow proficient printability in a PolyJet 3D printer comparable in resolution to a commercial synthetic ink (∼150 µm). The bioink formulation achieved the desired viability (∼80%) and proliferation of co-printed cells while demonstrating in vivo immune tolerance of printed structures. The practical usage of existing high-resolution 3D printing systems using a novel bioink is shown here, allowing 3D bioprinted structures with potentially unprecedented complexity.


Assuntos
Bioimpressão , Bioimpressão/métodos , Impressão Tridimensional , Gelatina/química , Reologia , Alicerces Teciduais/química , Engenharia Tecidual/métodos
8.
Neotrop Entomol ; 51(4): 637-640, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35020182

RESUMO

A novel baculovirus observed to infect Automeris liberia (Cramer) (bullseye moth) is here described. Caterpillars of A. liberia with symptoms of viral infection were collected from African oil palm plantations in Tailândia, PA, Brazil. Macerated caterpillars were then offered to caterpillars of Automeris cinctistriga (Felder & Rogenhoper), leading to viral symptoms and death before pupation. A transmission electron microscope was used for virus ultrastructural identification. The presence of viral occlusion bodies (OBs) containing multiple nucleocapsids was observed and such features are compatible with Alphabaculovirus (Baculoviridae). Molecular detection by PCR with primers for polyhedrin gene (polh) and for late expression factor-8 gene (lef-8), confirmed that this isolate belonged to Alphabaculovirus genus. To our knowledge, this is the first record of a baculovirus isolated from or associated to Automeris. The name Automeris liberia nucleopolyhedrovirus (AuliNPV) is proposed for the new virus.


Assuntos
Lepidópteros , Mariposas , Nucleopoliedrovírus , Animais , Baculoviridae , Brasil , Libéria , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/ultraestrutura , Filogenia
9.
Insects ; 12(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34564268

RESUMO

Coupling several natural and synthetic lures with aggregation pheromones from the palm weevils Rhynchophorus palmarum and R. ferrugineus reveals a synergy that results in an increase in pest captures. The combined attraction of pure pheromones, ethyl acetate, and decaying sweet and starchy plant tissue increases the net total of mass-trapped weevils. The 2018 entrance of the red palm weevil (RPW) into South America has threatened palm-product income in Brazil and other neighboring countries. The presence of the new A1 quarantine pest necessitates the review of all available options for a sustainable mass-trapping, monitoring, and control strategy to ultimately target both weevils with the same device. The effective lure-blend set for the mass-trapping system will attract weevils in baiting and contaminating stations for entomopathogenic fungi that the same weevils will spread.

10.
Lab Chip ; 20(5): 958-972, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31990283

RESUMO

Cell migration is a key function in a myriad of physiological events and disease conditions. Efficient, quick and descriptive profiling of migration behaviour in response to different treatments or conditions is highly desirable in a series of applications, ranging from fundamental studies of the migration mechanism to drug discovery and cell therapy. This investigation applied the use of methacrylamide gelatin (GelMA) to microfabricate migration lanes based on GelMA hydrogel with encapsulated migration stimuli and structural stability under culture medium conditions, providing the possibility of tailoring the microenvironment during cell-based assays. The actual device provides 3D topography, cell localization and a few step protocol, allowing the quick evaluation and quantification of individual migrated distances of a cell sample by an ImageJ plugin for automated microscopy processing. The detailed profiling of migration behaviour given by the new device has demonstrated a broader assay sensitivity compared to other migration assays and higher versatility to study cell migration in different settings of applications. In this study, parametric information extracted from the migration profiling was successfully used to develop predictive models of immunosuppressive cell function that could be applied as a potency test for mesenchymal stem cells.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Movimento Celular , Gelatina , Células-Tronco
12.
Nat Commun ; 10(1): 3098, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308369

RESUMO

Design strategies for small diameter vascular grafts are converging toward native-inspired tissue engineered grafts. A new automated technology is presented that combines a dip-spinning methodology for depositioning concentric cell-laden hydrogel layers, with an adapted solution blow spinning (SBS) device for intercalated placement of aligned reinforcement nanofibres. This additive manufacture approach allows the assembly of bio-inspired structural configurations of concentric cell patterns with fibres at specific angles and wavy arrangements. The middle and outer layers were tuned to structurally mimic the media and adventitia layers of native arteries, enabling the fabrication of small bore grafts that exhibit the J-shape mechanical response and compliance of human coronary arteries. This scalable automated system can fabricate cellularized multilayer grafts within 30 min. Grafts were evaluated by hemocompatibility studies and a preliminary in vivo carotid rabbit model. The dip-spinning-SBS technology generates constructs with native mechanical properties and cell-derived biological activities, critical for clinical bypass applications.


Assuntos
Bioprótese , Prótese Vascular , Vasos Coronários/anatomia & histologia , Engenharia Tecidual/métodos , Animais , Implante de Prótese Vascular/instrumentação , Implante de Prótese Vascular/métodos , Ponte de Artéria Coronária/instrumentação , Ponte de Artéria Coronária/métodos , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrogéis/química , Teste de Materiais/métodos , Modelos Animais , Coelhos , Resistência à Tração
13.
Mater Sci Eng C Mater Biol Appl ; 102: 373-390, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31147009

RESUMO

Tissue regeneration is witnessing a significant surge in advanced medicine. It requires the interaction of scaffolds with different cell types for efficient tissue formation post-implantation. The presence of tissue subtypes in more complex organs demands the co-existence of different biomaterials showing different hydrolysis rate for specialized cell-dependent remodeling. To expand the available toolbox of biomaterials with sufficient mechanical strength and variable rate of enzymatic degradation, a cold-adapted methacrylamide gelatin was developed from salmon skin. Compared with mammalian methacrylamide gelatin (GelMA), hydrogels derived from salmon GelMA displayed similar mechanical properties than the former. Nevertheless, salmon gelatin and salmon GelMA-derived hydrogels presented characteristics common of cold-adaptation, such as reduced activation energy for collagenase, increased enzymatic hydrolysis turnover of hydrogels, increased interconnected polypeptides molecular mobility and lower physical gelation capability. These properties resulted in increased cell-remodeling rate in vitro and in vivo, proving the potential and biological tolerance of this mechanically adequate cold-adapted biomaterial as alternative scaffold subtypes with improved cell invasion and tissue fusion capacity.


Assuntos
Acrilamidas/química , Materiais Biocompatíveis/química , Temperatura Baixa , Gelatina/química , Engenharia Tecidual/métodos , Animais , Bovinos , Proliferação de Células , Força Compressiva , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hidrogéis/química , Hidrólise , Ponto Isoelétrico , Cinética , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica , Salmão , Eletricidade Estática
14.
Regen Med ; 13(2): 233-248, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29557299

RESUMO

Microfabrication and microfluidics contribute to the research of cellular functions of cells and their interaction with their environment. Previously, it has been shown that microfluidics can contribute to the isolation, selection, characterization and migration of cells. This review aims to provide stem cell researchers with a toolkit of microtechnology (mT) instruments for elucidating complex stem cells functions which are challenging to decipher with traditional assays and animal models. These microdevices are able to investigate about the differentiation and niche interaction, stem cells transcriptomics, therapeutic functions and the capture of their secreted microvesicles. In conclusion, microtechnology will allow a more realistic assessment of stem cells properties, driving and accelerating the translation of regenerative medicine approaches to the clinic.

15.
Biomicrofluidics ; 11(4): 044109, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28852429

RESUMO

To develop biomimetic three-dimensional (3D) tissue constructs for drug screening and biological studies, engineered blood vessels should be integrated into the constructs to mimic the drug administration process in vivo. The development of perfusable vascularized 3D tissue constructs for studying the drug administration process through an engineered endothelial layer remains an area of intensive research. Here, we report the development of a simple 3D vascularized liver tissue model to study drug toxicity through the incorporation of an engineered endothelial layer. Using a sacrificial bioprinting technique, a hollow microchannel was successfully fabricated in the 3D liver tissue construct created with HepG2/C3A cells encapsulated in a gelatin methacryloyl hydrogel. After seeding human umbilical vein endothelial cells (HUVECs) into the microchannel, we obtained a vascularized tissue construct containing a uniformly coated HUVEC layer within the hollow microchannel. The inclusion of the HUVEC layer into the scaffold resulted in delayed permeability of biomolecules into the 3D liver construct. In addition, the vascularized construct containing the HUVEC layer showed an increased viability of the HepG2/C3A cells within the 3D scaffold compared to that of the 3D liver constructs without the HUVEC layer, demonstrating a protective role of the introduced endothelial cell layer. The 3D vascularized liver model presented in this study is anticipated to provide a better and more accurate in vitro liver model system for future drug toxicity testing.

16.
Enzyme Microb Technol ; 100: 60-70, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28284313

RESUMO

Enzymes active at low temperature are of great interest for industrial bioprocesses due to their high efficiency at a low energy cost. One of the particularities of naturally evolved cold-active enzymes is their increased enzymatic activity at low temperature, however the low thermostability presented in this type of enzymes is still a major drawback for their application in biocatalysis. Directed evolution of cold-adapted enzymes to a more thermostable version, appears as an attractive strategy to fulfill the stability and activity requirements for the industry. This paper describes the recombinant expression and characterization of a new and highly active cold-adapted xylanase from the GH-family 10 (Xyl-L), and the use of a novel one step combined directed evolution technique that comprises saturation mutagenesis and focused epPCR as a feasible semi-rational strategy to improve the thermostability. The Xyl-L enzyme was cloned from a marine-Antarctic bacterium, Psychrobacter sp. strain 2-17, recombinantly expressed in E. coli strain BL21(DE3) and characterized enzymatically. Molecular dynamic simulations using a homology model of the catalytic domain of Xyl-L were performed to detect flexible regions and residues, which are considered to be the possible structural elements that define the thermolability of this enzyme. Mutagenic libraries were designed in order to stabilize the protein introducing mutations in some of the flexible regions and residues identified. Twelve positive mutant clones were found to improve the T5015 value of the enzyme, in some cases without affecting the activity at 25°C. The best mutant showed a 4.3°C increase in its T5015. The efficiency of the directed evolution approach can also be expected to work in the protein engineering of stereoselectivity.


Assuntos
Evolução Molecular Direcionada/métodos , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Mutagênese , Reação em Cadeia da Polimerase/métodos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Clonagem Molecular , Temperatura Baixa , Endo-1,4-beta-Xilanases/química , Estabilidade Enzimática/genética , Genes Bacterianos , Modelos Moleculares , Simulação de Dinâmica Molecular , Engenharia de Proteínas/métodos , Psychrobacter/enzimologia , Psychrobacter/genética , Homologia Estrutural de Proteína
17.
Biofabrication ; 9(1): 015001, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27906688

RESUMO

Successful tissue engineered small diameter blood vessels (SDBV) require manufacturing systems capable of precisely controlling different key elements, such as material composition, geometry and spatial location of specialized biomaterials and cells types. We report in this work an automated methodology that enables the manufacture of multilayer cylindrical constructs for SDBV fabrication that uses a layer-by-layer deposition approach while controlling variables such as dipping and spinning speed of a rod and biomaterial viscosity. Different biomaterials including methacrylated gelatin, alginate and chitosan were tested using this procedure to build different parts of the constructs. The system was capable of controlling dimensions of lumen from 0.5 mm up to 6 mm diameter and individual layers from 1 µm up to 400 µm thick. A cellular component was successfully added to the biomaterial in the absence of significant cytotoxic effect which was assessed by viability and proliferation assays. Additionally, cells showed a homogenous distribution with well-defined concentric patterns across the multilayer vessel grafts. The challenging generation of inner endothelial cells of approximately 20-30 µm of thickness was achieved. Preliminary experimental evidences of microstructural alignment of the biomaterial were obtained when the dipping approach was combined with the rod rotation. The study demonstrated the wide versatility and scalability of the automated system to easily and rapidly fabricate complex cellularized multilayer vascular grafts with structural configuration that resembles natural blood vessels.


Assuntos
Materiais Biocompatíveis/química , Alicerces Teciduais/química , Alginatos/química , Prótese Vascular , Quitosana/química , Gelatina/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrogéis/química , Microscopia Eletrônica de Varredura , Viscosidade
18.
ACS Synth Biol ; 2(2): 83-92, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23656371

RESUMO

Saturation mutagenesis probes define sections of the vast protein sequence space. However, even if randomization is limited this way, the combinatorial numbers problem is severe. Because diversity is created at the codon level, codon redundancy is a crucial factor determining the necessary effort for library screening. Additionally, due to the probabilistic nature of the sampling process, oversampling is required to ensure library completeness as well as a high probability to encounter all unique variants. Our trick employs a special mixture of three primers, creating a degeneracy of 22 unique codons coding for the 20 canonical amino acids. Therefore, codon redundancy and subsequent screening effort is significantly reduced, and a balanced distribution of codon per amino acid is achieved, as demonstrated exemplarily for a library of cyclohexanone monooxygenase. We show that this strategy is suitable for any saturation mutagenesis methodology to generate less-redundant libraries.


Assuntos
Códon , Mutagênese Insercional/métodos , Proteínas/genética , Aminoácidos/genética , Técnicas de Química Combinatória/métodos , Primers do DNA/genética , Biblioteca Gênica , Código Genético , Oxigenases/genética
19.
Proc Natl Acad Sci U S A ; 107(7): 2775-80, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20133612

RESUMO

The molecular basis of allosteric effects, known to be caused by an effector docking to an enzyme at a site distal from the binding pocket, has been studied recently by applying directed evolution. Here, we utilize laboratory evolution in a different way, namely to induce allostery by introducing appropriate distal mutations that cause domain movements with concomitant reshaping of the binding pocket in the absence of an effector. To test this concept, the thermostable Baeyer-Villiger monooxygenase, phenylacetone monooxygenase (PAMO), was chosen as the enzyme to be employed in asymmetric Baeyer-Villiger reactions of substrates that are not accepted by the wild type. By using the known X-ray structure of PAMO, a decision was made regarding an appropriate site at which saturation mutagenesis is most likely to generate mutants capable of inducing allostery without any effector compound being present. After screening only 400 transformants, a double mutant was discovered that catalyzes the asymmetric oxidative kinetic resolution of a set of structurally different 2-substituted cyclohexanone derivatives as well as the desymmetrization of three different 4-substituted cyclohexanones, all with high enantioselectivity. Molecular dynamics (MD) simulations and covariance maps unveiled the origin of increased substrate scope as being due to allostery. Large domain movements occur that expose and reshape the binding pocket. This type of focused library production, aimed at inducing significant allosteric effects, is a viable alternative to traditional approaches to "designed" directed evolution that address the binding site directly.


Assuntos
Regulação Alostérica/genética , Evolução Molecular Direcionada , Oxigenases de Função Mista/química , Modelos Moleculares , Acetona/análogos & derivados , Acetona/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Simulação de Dinâmica Molecular , Estrutura Molecular , Mutagênese , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...