Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 10(12)2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795411

RESUMO

Arabidopsis naturally occurring populations have allowed for the identification of considerable genetic variation remodeled by adaptation to different environments and stress conditions. Water is a key resource that limits plant growth, and its availability is initially sensed by root tissues. The root's ability to adjust its physiology and morphology under water deficit makes this organ a useful model to understand how plants respond to water stress. Here, we used hyperosmotic shock stress treatments in different Arabidopsis accessions to analyze the root cell morphological responses. We found that osmotic stress conditions reduced root growth and root apical meristem (RAM) size, promoting premature cell differentiation without affecting the stem cell niche morphology. This phenotype was accompanied by a cluster of small epidermal and cortex cells with radial expansion and root hairs at the transition to the elongation zone. We also found this radial expansion with root hairs when plants are grown under hypoosmotic conditions. Finally, root growth was less affected by osmotic stress in the Sg-2 accession followed by Ws, Cvi-0, and Col-0; however, after a strong osmotic stress, Sg-2 and Cvi-0 were the most resilience accessions. The sensitivity differences among these accessions were not explained by stress-related gene expression. This work provides new cellular insights on the Arabidopsis root phenotypic variability and plasticity to osmotic stress.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/classificação , Arabidopsis/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/citologia , Arabidopsis/genética , Diferenciação Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Pressão Osmótica , Raízes de Plantas/citologia , Raízes de Plantas/genética , Nicho de Células-Tronco , Estresse Fisiológico
2.
Front Plant Sci ; 7: 858, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379140

RESUMO

Arabidopsis thaliana has been an excellent model system for molecular genetic approaches to development and physiology. More recently, the potential of studying various accessions collected from diverse habitats has been started to exploit. Col-0 has been the best-studied accession but we now know that several traits show significant divergences among them. In this work, we focused in the root that has become a key system for development. We studied root architecture and growth dynamics of 12 Arabidopsis accessions. Our data reveal a wide variability in root architecture and root length among accessions. We also found variability in the root apical meristem (RAM), explained mainly by cell size at the RAM transition domain and possibly by peculiar forms of organization at the stem cell niche in some accessions. Contrary to Col-0 reports, in some accessions the RAM size not always explains the variations in the root length; indicating that elongated cell size could be more relevant in the determination of root length than the RAM size itself. This study contributes to investigations dealing with understanding the molecular and cellular basis of phenotypic variation, the role of plasticity on adaptation, and the developmental mechanisms that may restrict phenotypic variation in response to contrasting environmental conditions.

3.
New Phytol ; 208(3): 684-94, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26037337

RESUMO

Current advances indicate that epigenetic mechanisms play important roles in the regulatory networks involved in plant developmental responses to environmental conditions. Hence, understanding the role of such components becomes crucial to understanding the mechanisms underlying the plasticity and variability of plant traits, and thus the ecology and evolution of plant development. We now know that important components of phenotypic variation may result from heritable and reversible epigenetic mechanisms without genetic alterations. The epigenetic factors Polycomb group (PcG) and Trithorax group (TrxG) are involved in developmental processes that respond to environmental signals, playing important roles in plant plasticity. In this review, we discuss current knowledge of TrxG and PcG functions in different developmental processes in response to internal and environmental cues and we also integrate the emerging evidence concerning their function in plant plasticity. Many such plastic responses rely on meristematic cell behavior, including stem cell niche maintenance, cellular reprogramming, flowering and dormancy as well as stress memory. This information will help to determine how to integrate the role of epigenetic regulation into models of gene regulatory networks, which have mostly included transcriptional interactions underlying various aspects of plant development and its plastic response to environmental conditions.


Assuntos
Epigênese Genética , Redes Reguladoras de Genes , Fenótipo , Desenvolvimento Vegetal , Proteínas do Grupo Polycomb/fisiologia , Reprogramação Celular , Histonas/metabolismo , Meristema/fisiologia , Nicho de Células-Tronco/fisiologia , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...