Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Toxicol In Vitro ; 97: 105802, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431059

RESUMO

BACKGROUND: An etiology of palmitic acid (PA) induced insulin resistance (IR) is complex for which two mechanisms are proposed namely ROS induced JNK activation and lipid induced protein kinase-C (PKCε) activation. However, whether these mechanisms act alone or in consortium is not clear. METHODS AND RESULTS: In this study, we have characterized PA induced IR in liver cells. These cells were treated with different concentrations of PA for either 8 or 16 h. Insulin responsiveness of cells treated with PA for 8 h was found to be same as that of control. However, cells treated with PA for 16 h, showed increased glucose output both in the presence and in absence of insulin only at higher concentrations, indicating development of IR. In these, both JNK and PKCε were activated in response to increased ROS and lipid accumulation, respectively. Activated JNK and PKCε phosphorylated IRS1 at Ser-307 resulting in inhibition of AKT which in turn inactivated GSK3ß, leading to reduced glycogen synthase activity. Inhibition of AKT also reduced insulin suppression of hepatic gluconeogenesis by activating Forkhead box protein O1 (FOXO1) and increased expression of the gluconeogenic enzymes and their transcription factors. CONCLUSION: Thus, our data clearly demonstrate that both these mechanisms work simultaneously and more importantly, identified a threshold of HepG2 cells, which when crossed led to the pathological state of IR in response to PA.


Assuntos
Resistência à Insulina , Humanos , Resistência à Insulina/fisiologia , Ácido Palmítico/toxicidade , Células Hep G2 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Fígado/metabolismo
2.
Antioxidants (Basel) ; 11(5)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35624890

RESUMO

Complications in type 2 diabetes (T2D) arise from hyperglycemia-induced oxidative stress. Here, we examined the effectiveness of supplementation with the endogenous antioxidant glutathione (GSH) during anti-diabetic treatment. A total of 104 non-diabetic and 250 diabetic individuals on anti-diabetic therapy, of either sex and aged between 30 and 78 years, were recruited. A total of 125 diabetic patients were additionally given 500 mg oral GSH supplementation daily for a period of six months. Fasting and PP glucose, insulin, HbA1c, GSH, oxidized glutathione (GSSG), and 8-hydroxy-2-deoxy guanosine (8-OHdG) were measured upon recruitment and after three and six months of supplementation. Statistical significance and effect size were assessed longitudinally across all arms. Blood GSH increased (Cohen's d = 1.01) and 8-OHdG decreased (Cohen's d = −1.07) significantly within three months (p < 0.001) in diabetic individuals. A post hoc sub-group analysis showed that HbA1c (Cohen's d = −0.41; p < 0.05) and fasting insulin levels (Cohen's d = 0.56; p < 0.05) changed significantly in diabetic individuals above 55 years. GSH supplementation caused a significant increase in blood GSH and helped maintain the baseline HbA1c overall. These results suggest GSH supplementation is of considerable benefit to patients above 55 years, not only supporting decreased glycated hemoglobin (HbA1c) and 8-OHdG but also increasing fasting insulin. The clinical implication of our study is that the oral administration of GSH potentially complements anti-diabetic therapy in achieving better glycemic targets, especially in the elderly population.

3.
Phytother Res ; 35(11): 6462-6471, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34612537

RESUMO

In this study, we evaluated a detailed molecular mechanism of anti-adipogenic activity of vitexin, apigenin flavone glucoside, present in germinated fenugreek seeds, in differentiating human mesenchymal stem cells (hMSCs). The lipid content of differentiated adipocytes was estimated by ORO staining. Effect on mitotic clonal expansion was checked by cell cycle analysis. Expression of early and terminal adipocyte differentiation markers, anti- and pro-adipogenic transcription factors and signalling intermediates regulating them was evaluated at RNA and protein level. We found vitexin to be non-cytotoxic up to 20 µM at which intracellular lipid accumulation was significantly decreased. Cell cycle analysis suggested that vitexin does not affect mitotic clonal expansion. Expression of early and late differentiation markers, such as CEBPα, CEBPß, PPARγ, FABP4, perilipin, adiponectin and Glut4 was significantly reduced in the presence of vitexin. Expression of KLF4 and KLF15, positive regulators of PPARγ, was decreased, whereas that of negative regulators, namely KLF2, GATA2, miR20a, miR27a, miR27b, miR128, miR130a, miR130b, miR182 and miR548 increased with vitexin treatment. This effect was mediated by the activation of the AMP-activated protein kinase (AMPK) pathway via the activation of LepR and additionally by inhibiting ROS. Thus, our results showed that vitexin regulates the expression of PPARγ and inhibits adipogenesis of hMSCs at an early stage of differentiation.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Células 3T3-L1 , Adipócitos , Animais , Apigenina/farmacologia , Diferenciação Celular , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , PPAR gama/genética
4.
Biol Chem ; 402(2): 179-194, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33544469

RESUMO

The aberrant misfolding and self-assembly of human islet amyloid polypeptide (hIAPP)-a hormone that is co-secreted with insulin from pancreatic ß-cells-into toxic oligomers, protofibrils and fibrils has been observed in type 2 diabetes mellitus (T2DM). The formation of these insoluble aggregates has been linked with the death and dysfunction of ß-cells. Therefore, hIAPP aggregation has been identified as a therapeutic target for T2DM management. Several natural products are now being investigated for their potential to inhibit hIAPP aggregation and/or disaggregate preformed aggregates. In this study, we attempt to identify the anti-amyloidogenic potential of Myricetin (MYR)- a polyphenolic flavanoid, commonly found in fruits (like Syzygium cumini). Our results from biophysical studies indicated that MYR supplementation inhibits hIAPP aggregation and disaggregates preformed fibrils into non-toxic species. This protection was accompanied by inhibition of oxidative stress, reduction in lipid peroxidation and the associated membrane damage and restoration of mitochondrial membrane potential in INS-1E cells. MYR supplementation also reversed the loss of functionality in hIAPP exposed pancreatic islets via restoration of glucose-stimulated insulin secretion. Molecular dynamics simulation studies suggested that MYR molecules interact with the hIAPP pentameric fibril model at the amyloidogenic core region and thus prevents aggregation and distort the fibrils.


Assuntos
Flavonoides/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/antagonistas & inibidores , Ilhotas Pancreáticas/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Flavonoides/química , Frutas/química , Humanos , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/síntese química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Ilhotas Pancreáticas/metabolismo , Simulação de Dinâmica Molecular , Substâncias Protetoras/síntese química , Substâncias Protetoras/química , Agregados Proteicos/efeitos dos fármacos , Syzygium/química
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1865(10): 158777, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32755726

RESUMO

AIMS: PPARγ is a crucial transcription factor involved in development of hepatic steatosis, an early stage of NAFLD. PPARγ is tightly regulated through various positive and negative regulators including miRNAs. In this study, we report for the first time miR-3666 as a negative regulator of PPARγ and its involvement in development of hepatic steatosis. METHODS: Binding of miR-3666 to regulate PPARγ was checked by luciferase assay and was confirmed by mutating PPARγ 3'UTR. Regulation of PPARγ was determined by overexpression of miR-3666 in HepG2 cells. Hepatic steatotic state in HepG2 cells was developed by exposure to excess palmitic acid and expression of PPARγ, miR-3666 and some PPARγ target and non-target genes was checked. Involvement of mir-3666 by regulating PPARγ in hepatic steatosis was also examined in liver of HFD fed mice. RESULTS: On overexpression of miR-3666, PPARγ expression decreased significantly in a dose-dependent manner in HepG2 cells. Binding of miR-3666 to PPARγ was confirmed as the luciferase activity using pMIR-REPORT with PPARγ 3'UTR decreased in PA treated HepG2 cells overexpressing miR-3666 and remained unchanged when PPARγ 3'UTR was mutated. In PA treated HepG2 cells during development of hepatic steatosis PPARγ was significantly up-regulated concomitant with down-regulation of miR-3666. Overexpression of miR-3666 in these cells decreased the extent of hepatic steatosis. Significant up-regulation of PPARγ and down-regulation of miR-3666 was also observed in liver of HFD fed mice indicating that miR-3666 regulates PPARγ in vivo. CONCLUSIONS: miR-3666 negatively regulates PPARγ by binding to its 3'UTR during development of hepatic steatosis.


Assuntos
Fígado Gorduroso/genética , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica/genética , PPAR gama/genética , Regiões 3' não Traduzidas/genética , Animais , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Regulação da Expressão Gênica/genética , Células Hep G2 , Humanos , Fígado/metabolismo , Fígado/patologia , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Ácido Palmítico/metabolismo
6.
mSystems ; 5(2)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32234773

RESUMO

Type 2 diabetes (T2D) is a complex metabolic syndrome characterized by insulin dysfunction and abnormalities in glucose and lipid metabolism. The gut microbiome has been recently identified as an important factor for development of T2D. In this study, a total of 102 subjects were recruited, and we have looked at the gut microbiota of prediabetics (PreDMs) (n = 17), newly diagnosed diabetics (NewDMs) (n = 11), and diabetics on antidiabetic treatment (KnownDMs) (n = 39) and compared them with healthy nondiabetics (ND) (n = 35). Twenty-five different serum biomarkers were measured to assess the status of diabetes and their association with gut microbiota. Our analysis revealed nine different genera as differentially abundant in four study groups. Among them, Akkermansia, Blautia, and Ruminococcus were found to be significantly (P < 0.05) decreased, while Lactobacillus was increased in NewDMs compared to ND and recovered in KnownDMs. Akkermansia was inversely correlated with HbA1c and positively correlated with total antioxidants. Compared to ND, there was increased abundance of Megasphaera, Escherichia, and Acidaminococcus and decreased abundance of Sutterella in KnownDMs. Among many taxa known to act as community drivers during disease progression, we observed genus Sutterella as a common driver taxon among all diabetic groups. On the basis of the results of random forest analysis, we found that the genera Akkermansia and Sutterella and that the serum metabolites fasting glucose, HbA1c, methionine, and total antioxidants were highly discriminative factors among studied groups. Taken together, our data revealed that gut microbial diversity of NewDMs but not of PreDMs is significantly different from that of ND. Interestingly, after antidiabetic treatment, the microbial diversity of KnownDMs tends to recover toward that of ND.IMPORTANCE Gut microbiota is considered to play a role in disease progression, and previous studies have reported an association of microbiome dysbiosis with T2D. In this study, we have attempted to investigate gut microbiota of ND, PreDMs, NewDMs, and KnownDMs. We found that the genera Akkermansia and Blautia decreased significantly (P < 0.05) in treatment-naive diabetics and were restored in KnownDMs on antidiabetic treatment. To the best of our knowledge, comparative studies on shifts in the microbial community in individuals of different diabetic states are lacking. Understanding the transition of microbiota and its association with serum biomarkers in diabetics with different disease states may pave the way for new therapeutic approaches for T2D.

7.
Free Radic Res ; 53(7): 815-827, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31223033

RESUMO

Insulin resistance (IR) is known to precede onset of type 2 diabetes and increased oxidative stress appears to be a deleterious factor leading to IR. In this study, we evaluated ability of pterostilbene (PTS), a methoxylated analogue of resveratrol and a known antioxidant, to reverse palmitic acid (PA)-mediated IR in HepG2 cells. PTS prevented reactive oxygen species (ROS) formation and subsequent oxidative lipid damage by reducing the expression of NADPH oxidase 3 (NOX3) in PA treated HepG2 cells. Hepatic glucose production was used as a measure of IR and PTS reversed PA-mediated increase in hepatic glucose production by reducing expression of genes coding for gluconeogenic enzymes namely glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK), and pyruvate carboxylase (PC); and their transcription factors cAMP response element binding protein (CREB) and fork head class Box O (FOXO1) along with its coactivator peroxisome proliferator-activated receptor gamma co-activator-1 α (PGC1α). PTS reversed PA-mediated activation of c-Jun N-terminal kinase (JNK), which in turn altered insulin signalling pathway by phosphorylating IRS-1 at Ser 307, leading to inhibition of phosphorylation of Akt and GSK-3ß. PTS also reduced PA-mediated lipid accumulation by reducing expression of transcription factors SREBP1c and PPARα. SREBP1c activates genes involved in fatty acid and triglyceride synthesis while PPARα activates CPT1, a rate limiting enzyme for controlling entry and oxidation of fatty acids into mitochondria. PTS, however, did not influence PA uptake confirmed by using BODIPY-labelled fluorescent C16 fatty acid analogue. Thus, our data provides a possible mechanistic explanation for reversal of PA-mediated IR in HepG2 cells.


Assuntos
Resistência à Insulina/genética , Ácido Palmítico/efeitos adversos , Estilbenos/uso terapêutico , Triglicerídeos/metabolismo , Células Hep G2 , Humanos , Estresse Oxidativo , Estilbenos/farmacologia
8.
Biochem J ; 476(5): 889-907, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30814273

RESUMO

The human islet amyloid polypeptide (hIAPP) or amylin is the major constituent of amyloidogenic aggregates found in pancreatic islets of type 2 diabetic patients that have been associated with ß-cell dysfunction and/or death associated with type 2 diabetes mellitus (T2DM). Therefore, developing and/or identifying inhibitors of hIAPP aggregation pathway and/or compound that can mediate disaggregation of preformed aggregates holds promise as a medical intervention for T2DM management. In the current study, the anti-amyloidogenic potential of Azadirachtin (AZD)-a secondary metabolite isolated from traditional medicinal plant Neem (Azadirachta indica)-was investigated by using a combination of biophysical and cellular assays. Our results indicate that AZD supplementation not only inhibits hIAPP aggregation but also disaggregates pre-existing hIAPP fibrils by forming amorphous aggregates that are non-toxic to pancreatic ß-cells. Furthermore, AZD supplementation in pancreatic ß-cells (INS-1E) resulted in inhibition of oxidative stress; along with restoration of the DNA damage, lipid peroxidation and the associated membrane damage, endoplasmic reticulum stress and mitochondrial membrane potential. AZD treatment also restored glucose-stimulated insulin secretion from pancreatic islets exposed to hIAPP. All-atom molecular dynamics simulation studies on full-length hIAPP pentamer with AZD suggested that AZD interacted with four possible binding sites in the amyloidogenic region of hIAPP. In summary, our results suggest AZD to be a promising candidate for combating T2DM and related amyloidogenic disorders.


Assuntos
Amiloide , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Limoninas/farmacologia , Simulação de Dinâmica Molecular , Estresse Oxidativo/efeitos dos fármacos , Amiloide/química , Amiloide/metabolismo , Amiloidose/tratamento farmacológico , Amiloidose/metabolismo , Amiloidose/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo
9.
Metabolomics ; 15(4): 55, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30927092

RESUMO

INTRODUCTION: Chronic exposure to high-glucose and free fatty acids (FFA) alone/or in combination; and the resulting gluco-, lipo- and glucolipo-toxic conditions, respectively, have been known to induce dysfunction and apoptosis of ß-cells in Diabetes. The molecular mechanisms and the development of biomarkers that can be used to predict similarities and differences behind these conditions would help in easier and earlier diagnosis of Diabetes. OBJECTIVES: This study aims to use metabolomics to gain insight into the mechanisms by which ß-cells respond to excess-nutrient stress and identify associated biomarkers. METHODS: INS-1E cells were cultured in high-glucose, palmitate alone/or in combination for 24 h to mimic gluco-, lipo- and glucolipo-toxic conditions, respectively. Biochemical and cellular experiments were performed to confirm the establishment of these conditions. To gain molecular insights, abundant metabolites were identified and quantified using 1H-NMR. RESULTS: No loss of cellular viability was observed in high-glucose while exposure to FFA alone/in combination with high-glucose was associated with increased ROS levels, membrane damage, lipid accumulation, and DNA double-strand breaks. Forty-nine abundant metabolites were identified and quantified using 1H-NMR. Chemometric pair-wise analysis in glucotoxic and lipotoxic conditions, when compared with glucolipotoxic conditions, revealed partial overlap in the dysregulated metabolites; however, the dysregulation was more significant under glucolipotoxic conditions. CONCLUSION: The current study compared gluco-, lipo- and glucolipotoxic conditions in parallel and elucidated differences in metabolic pathways that play major roles in Diabetes. o-phosphocholine and UDP-N-acetylglucosamine were identified as common dysregulated metabolites and their ratio was proposed as a potential biomarker for these conditions.


Assuntos
Células Secretoras de Insulina/metabolismo , Fosforilcolina/análise , Uridina Difosfato N-Acetilglicosamina/análise , Animais , Apoptose , Biomarcadores/sangue , Diabetes Mellitus/metabolismo , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/metabolismo , Glucose/efeitos adversos , Glucose/metabolismo , Células Secretoras de Insulina/fisiologia , Palmitatos/efeitos adversos , Palmitatos/metabolismo , Fosforilcolina/sangue , Ratos , Uridina Difosfato N-Acetilglicosamina/sangue
10.
Biochem J ; 474(23): 3915-3934, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29046394

RESUMO

Protein misfolding and aggregation play an important role in many human diseases including Alzheimer's, Parkinson's and type 2 diabetes mellitus (T2DM). The human islet amyloid polypeptide (hIAPP) forms amyloid plaques in the pancreas of T2DM subjects (>95%) that are involved in deteriorating islet function and in mediating ß-cell apoptosis. However, the detailed mechanism of action, structure and nature of toxic hIAPP species responsible for this effect remains elusive to date mainly due to the high cost associated with the chemical synthesis of pure peptide required for these studies. In the present work, we attempted to obtain structural and mechanistic insights into the hIAPP aggregation process using recombinant hIAPP (rhIAPP) isolated from Escherichia coli Results from biophysical and structural studies indicate that the rhIAPP self-assembled into highly pure, ß-sheet-rich amyloid fibrils with uniform morphology. rhIAPP-mediated apoptosis in INS-1E cells was associated with increased oxidative stress and changes in mitochondrial membrane potential. The transcript levels of apoptotic genes - Caspase-3 and Bax were found to be up-regulated, while the levels of the anti-apoptotic gene - Bcl2 were down-regulated in rhIAPP-treated cells. Additionally, the expression levels of genes involved in combating oxidative stress namely Catalase, SOD1 and GPx were down-regulated. rhIAPP exposure also affected glucose-stimulated insulin secretion from isolated pancreatic islets. The aggregation of rhIAPP also occurred significantly faster when compared with that of the chemically synthesized peptide. We also show that the rhIAPP fibrils were shorter and more cytotoxic. In summary, our study is one among the few to provide comprehensive evaluation of structural, biophysical and cytotoxic properties of rhIAPP.


Assuntos
Apoptose/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Estresse Oxidativo/efeitos dos fármacos , Caspase 3/biossíntese , Catalase/biossíntese , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células Secretoras de Insulina/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Superóxido Dismutase-1/biossíntese , Proteína X Associada a bcl-2/biossíntese
11.
Front Cell Dev Biol ; 4: 16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27047940

RESUMO

Deficiencies in vitamin B12 and glutathione (GSH) are associated with a number of diseases including type 2 diabetes mellitus. We tested newly diagnosed Indian diabetic patients for correlation between their vitamin B12 and GSH, and found it to be weak. Here we seek to examine the theoretical dependence of GSH on vitamin B12 with a mathematical model of 1-carbon metabolism due to Reed and co-workers. We study the methionine cycle of the Reed-Nijhout model by developing a simple "stylized model" that captures its essential topology and whose kinetics are analytically tractable. The analysis shows-somewhat counter-intuitively-that the flux responsible for the homeostasis of homocysteine is, in fact, peripheral to the methionine cycle. Elevation of homocysteine arises from reduced activity of methionine synthase, a vitamin B12-dependent enzyme, however, this does not increase GSH biosynthesis. The model suggests that the lack of vitamin B12-GSH correlation is explained by suppression of activity in the trans-sulfuration pathway that limits the synthesis of cysteine and GSH from homocysteine. We hypothesize this "cysteine-block" is an essential consequence of vitamin B12 deficiency. It can be clinically relevant to appreciate that these secondary effects of vitamin B12 deficiency could be central to its pathophysiology.

12.
J Theor Biol ; 363: 158-63, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25158164

RESUMO

OBJECTIVE: HbA1c measurements are typically less variable than fasting plasma glucose (FPG) for diagnosing diabetes, and for assessment of progress on glucose control therapy. However HbA1c reaches steady-state relative to average plasma glucose over about 120 days. HbA1c thus overestimates average FPG during first three months of starting therapy in newly diagnosed diabetic patients, and care needs to be exercised in interpreting HbA1c measurements during this period. At steady-state excellent regression exists between HbA1c and FPG. We hypothesize that this regression can also be used to obtain reliable estimates of HbA1c relative to FPG at 4 and 8 weeks following the onset of therapy. MATERIALS AND METHODS: We collected FPG and HbA1c data of type 2 diabetic patients over the first 8 weeks of starting antidiabetic treatment. We fit linear and nonlinear regression models to steady-state data, and estimated how much measured HbA1c deviates at 4 and 8 weeks from these theoretical relations. RESULTS: If measured HbA1c is decremented by 0.7% (8 mmol/mol) at 4 weeks and 0.3% (3 mmol/mol) at 8 weeks, this corrected HbA1c is a better predictor of the corresponding FPG. Using hyperbolic regression, corrections to HbA1c are 0.5 and 0.1% (5 and 1 mmol/mol), respectively. CONCLUSION: With the corrections proposed here, HbA1c measurements can be better interpreted in the early weeks of antidiabetic treatment.


Assuntos
Biomarcadores/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Jejum/sangue , Hemoglobinas Glicadas/metabolismo , Cromatografia Líquida de Alta Pressão , Humanos , Análise de Regressão , Fatores de Tempo
14.
PLoS One ; 9(6): e100897, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24971653

RESUMO

Cellular and animal studies suggest that oxidative stress could be the central defect underlying both beta-cell dysfunction and insulin resistance in type 2 diabetes mellitus. A reduction of glycemic stress in diabetic patients on therapy alleviates systemic oxidative stress and improves insulin resistance and beta-cell secretion. Monitoring oxidative stress systematically with glucose can potentially identify an individual's recovery trajectory. To determine a quantitative model of serial changes in oxidative stress, as measured via the antioxidant glutathione, we followed patients newly diagnosed with diabetes over 8 weeks of starting anti-diabetic treatment. We developed a mathematical model which shows recovery is marked with a quantal response. For each individual the model predicts three theoretical quantities: an estimate of maximal glutathione at low stress, a glucose threshold for half-maximal glutathione, and a rate at which recovery progresses. Individual patients are seen to vary considerably in their response to glucose control. Thus, model estimates can potentially be used to determine whether an individual patient's response is better or worse than average in terms of each of these indices; they can therefore be useful in reassessing treatment strategy. We hypothesize that this method can aid the personalization of effective targets of glucose control in anti-diabetic therapy.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Estresse Oxidativo , Adulto , Glicemia/análise , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/patologia , Glutationa/metabolismo , Hemoglobinas Glicadas/análise , Humanos , Pessoa de Meia-Idade , Modelos Teóricos , Espécies Reativas de Oxigênio/metabolismo , Índice de Gravidade de Doença
15.
Diabetes Metab Res Rev ; 30(7): 590-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24459082

RESUMO

BACKGROUND: There exist several reports demonstrating enhancement in oxidative stress in diabetic patients; however, serial and comprehensive measurement of oxidative stress parameters in newly diagnosed diabetic patients is not yet reported. We measured the oxidative stress parameters in diabetic patients serially from the time of diagnosis and after starting treatment to study their association with glycaemia, insulin resistance and ß-cell function. METHODS: Fifty-four newly diagnosed diabetic patients were studied at diagnosis and 4 and 8 weeks after initiating anti-hyperglycaemic treatment. Oxidative stress parameters included activity of antioxidant enzymes, concentration of antioxidant molecules and damage markers. Oxidative stress score was computed as a collective measure of oxidative stress to interpret total oxidative stress state. Association of changing glucose levels with changing oxidative stress parameters over 8 weeks and association of oxidative stress score with insulin resistance and ß-cell function was analysed by homeostasis model assessment (HOMA-IR and HOMA-ß, respectively). RESULTS: Eight weeks of treatment improved HbA1C from 9.8 ± 2.1 to 7.7 ± 1.0%. There was a significant increase in oxidative stress in diabetic patients [23.8 (95% CI 20.0, 27.6)] compared with non-diabetic subjects [-1.2 (-3.4, 0.9)] (p < 0.001). Non-diabetic subjects showed a stable status over 8 weeks. Improvement in hyperglycaemia in diabetic patients was associated with an improvement in oxidative stress parameters irrespective of the anti-diabetic treatment received. Oxidative stress score fell after 8 weeks and was significantly associated with an improvement in HOMA-ß (standardized ß = -0.38, p < 0.01) but not with HOMA-IR. CONCLUSIONS: Controlling hyperglycaemia in diabetic patients alleviates oxidative stress within 8 weeks of treatment, and improvement in oxidative stress parameters was related to an improved ß-cell function.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Células Secretoras de Insulina/fisiologia , Estresse Oxidativo/fisiologia , Adulto , Antioxidantes/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Seguimentos , Hemoglobinas Glicadas/metabolismo , Humanos , Hiperglicemia/sangue , Hiperglicemia/fisiopatologia , Hipoglicemiantes/farmacologia , Insulina/sangue , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/efeitos dos fármacos , Peróxidos Lipídicos/metabolismo , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Carbonilação Proteica/fisiologia , Estudos Retrospectivos , Superóxido Dismutase/metabolismo , Resultado do Tratamento
16.
BMC Complement Altern Med ; 13: 238, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24070177

RESUMO

BACKGROUND: Pterostilbene, a methoxylated analog of Resveratrol, is gradually gaining more importance as a therapeutic drug owing to its higher lipophilicity, bioavailability and biological activity than Resveratrol. This study was undertaken to characterize its ability to scavenge free radicals such as superoxide, hydroxyl and hydrogen peroxide and to protect bio-molecules within a cell against oxidative insult. METHODS: Anti-oxidant activity of Pterostilbene was evaluated extensively by employing several in vitro radical scavenging/inhibiting assays and pulse radiolysis study. In addition, its ability to protect rat liver mitochondria against tertiary-butyl hydroperoxide (TBHP) and hydroxyl radical generated oxidative damage was determined by measuring the damage markers such as protein carbonyls, protein sulphydryls, lipid hydroperoxides, lipid peroxides and 8-hydroxy-2'-deoxyguanosine. Pterostilbene was also evaluated for its ability to inhibit •OH radical induced single strand breaks in pBR322 DNA. RESULT: Pterostilbene exhibited strong anti-oxidant activity against various free radicals such as DPPH, ABTS, hydroxyl, superoxide and hydrogen peroxide in a concentration dependent manner. Pterostilbene conferred protection to proteins, lipids and DNA in isolated mitochondrial fractions against TBHP and hydroxyl radical induced oxidative damage. It also protected pBR322 DNA against oxidative assault. CONCLUSIONS: Thus, present study provides an evidence for the strong anti-oxidant property of Pterostilbene, methoxylated analog of Resveratrol, thereby potentiating its role as an anti-oxidant.


Assuntos
Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Estilbenos/farmacologia , Animais , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Feminino , Radicais Livres/metabolismo , Fígado/química , Fígado/efeitos dos fármacos , Mitocôndrias/química , Mitocôndrias/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Plasmídeos/química , Plasmídeos/efeitos dos fármacos , Ratos , Ratos Wistar
17.
Islets ; 2(4): 225-35, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21099317

RESUMO

Pancreatic ß-cells secrete insulin in response to changes in extracellular glucose concentration. Persistent hyperglycemia during diabetes exerts toxic effects on islets by creating redox imbalance arising from overproduction of reactive oxygen species (ROS). ROS accumulation disturbs the integrity and physiological function of cellular biomolecules impairing viability and functionality of cells. Susceptibility of an organ to oxidative stress (OS) is determined by its defense mechanism and ability to repair DNA damage caused by ROS. Weak defense status of islets along with its inefficiency to repair oxidative DNA damage as compared to other tissues renders it extraordinarily sensitive to OS. Realizing the vulnerability of islet cells to oxidative damage, several efforts to boost their defense mechanism in the form of oral administration of antioxidants and overexpression of genes responsible for antioxidant enzymes have proven successful. Recently accountability for this low antioxidant defense of islets have been given by correlating it with its metabolic evolution.


Assuntos
Antioxidantes/metabolismo , Antioxidantes/fisiologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/fisiologia , Animais , Humanos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/fisiopatologia , Modelos Biológicos , Estresse Oxidativo/fisiologia , Pancreatopatias/etiologia , Pancreatopatias/metabolismo , Espécies Reativas de Oxigênio/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA