Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 4252, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31534152

RESUMO

Mitotic cells attenuate the DNA damage response (DDR) by phosphorylating 53BP1, a critical DDR mediator, to prevent its localization to damaged chromatin. Timely dephosphorylation of 53BP1 is critical for genome integrity, as premature recruitment of 53BP1 to DNA lesions impairs mitotic fidelity. Protein phosphatase 4 (PP4) dephosphorylates 53BP1 in late mitosis to allow its recruitment to DNA lesions in G1. How cells appropriately dephosphorylate 53BP1, thereby restoring DDR, is unclear. Here, we elucidate the underlying mechanism of kinetic control of 53BP1 dephosphorylation in mitosis. We demonstrate that CDK5, a kinase primarily functional in post-mitotic neurons, is active in late mitotic phases in non-neuronal cells and directly phosphorylates PP4R3ß, the PP4 regulatory subunit that recognizes 53BP1. Specific inhibition of CDK5 in mitosis abrogates PP4R3ß phosphorylation and abolishes its recognition and dephosphorylation of 53BP1, ultimately preventing the localization of 53BP1 to damaged chromatin. Our results establish CDK5 as a regulator of 53BP1 recruitment.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Reparo do DNA/genética , Fase G1/genética , Fosfoproteínas Fosfatases/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Dano ao DNA/genética , Células HEK293 , Células HeLa , Humanos , Mitose/genética , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
2.
Radiat Oncol ; 11: 61, 2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-27117590

RESUMO

BACKGROUND: Risk of normal tissue toxicity limits the amount of thoracic radiation therapy (RT) that can be routinely prescribed to treat non-small cell lung cancer (NSCLC). An early biomarker of response to thoracic RT may provide a way to predict eventual toxicities-such as radiation pneumonitis-during treatment, thereby enabling dose adjustment before the symptomatic onset of late effects. MicroRNAs (miRNAs) were studied as potential serological biomarkers for thoracic RT. As a first step, we sought to identify miRNAs that correlate with delivered dose and standard dosimetric factors. METHODS: We performed miRNA profiling of plasma samples obtained from five patients with Stage IIIA NSCLC at five dose-points each during radical thoracic RT. Candidate miRNAs were then assessed in samples from a separate cohort of 21 NSCLC patients receiving radical thoracic RT. To identify a cellular source of circulating miRNAs, we quantified in vitro miRNA expression intracellularly and within secreted exosomes in five NSCLC and stromal cell lines. RESULTS: miRNA profiling of the discovery cohort identified ten circulating miRNAs that correlated with delivered RT dose as well as other dosimetric parameters such as lung V20. In the validation cohort, miR-29a-3p and miR-150-5p were reproducibly shown to decrease with increasing radiation dose. Expression of miR-29a-3p and miR-150-5p in secreted exosomes decreased with radiation. This was concomitant with an increase in intracellular levels, suggesting that exosomal export of these miRNAs may be downregulated in both NSCLC and stromal cells in response to radiation. CONCLUSIONS: miR-29a-3p and miR-150-5p were identified as circulating biomarkers that correlated with delivered RT dose. miR-150 has been reported to decrease in the circulation of mammals exposed to radiation while miR-29a has been associated with fibrosis in the human heart, lungs, and kidneys. One may therefore hypothesize that outlier levels of circulating miR-29a-3p and miR-150-5p may eventually help predict unexpected responses to radiation therapy, such as toxicity.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , MicroRNAs/sangue , Radioterapia/métodos , Biomarcadores/sangue , Carcinoma Pulmonar de Células não Pequenas/sangue , Linhagem Celular Tumoral , Estudos de Coortes , Meios de Cultivo Condicionados/química , Regulação para Baixo , Exossomos/metabolismo , Fibrose/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/sangue , Radiometria/métodos
3.
Sci Transl Med ; 7(287): 287ra69, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25972001

RESUMO

Accidental radiation exposure is a threat to human health that necessitates effective clinical planning and diagnosis. Minimally invasive biomarkers that can predict long-term radiation injury are urgently needed for optimal management after a radiation accident. We have identified serum microRNA (miRNA) signatures that indicate long-term impact of total body irradiation (TBI) in mice when measured within 24 hours of exposure. Impact of TBI on the hematopoietic system was systematically assessed to determine a correlation of residual hematopoietic stem cells (HSCs) with increasing doses of radiation. Serum miRNA signatures distinguished untreated mice from animals exposed to radiation and correlated with the impact of radiation on HSCs. Mice exposed to sublethal (6.5 Gy) and lethal (8 Gy) doses of radiation were indistinguishable for 3 to 4 weeks after exposure. A serum miRNA signature detectable 24 hours after radiation exposure consistently segregated these two cohorts. Furthermore, using either a radioprotective agent before, or radiation mitigation after, lethal radiation, we determined that the serum miRNA signature correlated with the impact of radiation on animal health rather than the radiation dose. Last, using humanized mice that had been engrafted with human CD34(+) HSCs, we determined that the serum miRNA signature indicated radiation-induced injury to the human bone marrow cells. Our data suggest that serum miRNAs can serve as functional dosimeters of radiation, representing a potential breakthrough in early assessment of radiation-induced hematopoietic damage and timely use of medical countermeasures to mitigate the long-term impact of radiation.


Assuntos
Biomarcadores/sangue , Células-Tronco Hematopoéticas/efeitos da radiação , MicroRNAs/sangue , Irradiação Corporal Total , Animais , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética
4.
Blood ; 124(19): 2937-47, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25202142

RESUMO

The glycosyltransferase gene, Ext1, is essential for heparan sulfate production. Induced deletion of Ext1 selectively in Mx1-expressing bone marrow (BM) stromal cells, a known population of skeletal stem/progenitor cells, in adult mice resulted in marked changes in hematopoietic stem and progenitor cell (HSPC) localization. HSPC egressed from BM to spleen after Ext1 deletion. This was associated with altered signaling in the stromal cells and with reduced vascular cell adhesion molecule 1 production by them. Further, pharmacologic inhibition of heparan sulfate mobilized qualitatively more potent and quantitatively more HSPC from the BM than granulocyte colony-stimulating factor alone, including in a setting of granulocyte colony-stimulating factor resistance. The reduced presence of endogenous HSPC after Ext1 deletion was associated with engraftment of transfused HSPC without any toxic conditioning of the host. Therefore, inhibiting heparan sulfate production may provide a means for avoiding the toxicities of radiation or chemotherapy in HSPC transplantation for nonmalignant conditions.


Assuntos
Mobilização de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Heparitina Sulfato/biossíntese , N-Acetilglucosaminiltransferases/metabolismo , Células Estromais/metabolismo , Condicionamento Pré-Transplante , Animais , Anticoagulantes/farmacologia , Ligação Competitiva/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/metabolismo , Fator Estimulador de Colônias de Granulócitos/farmacologia , Proteínas de Fluorescência Verde/genética , Heparina/farmacologia , Heparitina Sulfato/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , N-Acetilglucosaminiltransferases/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Células Estromais/imunologia , Molécula 1 de Adesão de Célula Vascular/imunologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
5.
Mol Cell ; 54(3): 512-25, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24703952

RESUMO

Excluding 53BP1 from chromatin is required to attenuate the DNA damage response during mitosis, yet the functional relevance and regulation of this exclusion are unclear. Here we show that 53BP1 is phosphorylated during mitosis on two residues, T1609 and S1618, located in its well-conserved ubiquitination-dependent recruitment (UDR) motif. Phosphorylating these sites blocks the interaction of the UDR motif with mononuclesomes containing ubiquitinated histone H2A and impedes binding of 53BP1 to mitotic chromatin. Ectopic recruitment of 53BP1-T1609A/S1618A to mitotic DNA lesions was associated with significant mitotic defects that could be reversed by inhibiting nonhomologous end-joining. We also reveal that protein phosphatase complex PP4C/R3ß dephosphorylates T1609 and S1618 to allow the recruitment of 53BP1 to chromatin in G1 phase. Our results identify key sites of 53BP1 phosphorylation during mitosis, identify the counteracting phosphatase complex that restores the potential for DDR during interphase, and establish the physiological importance of this regulation.


Assuntos
Quebras de DNA de Cadeia Dupla , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Fase G1 , Células HeLa , Humanos , Mitose , Dados de Sequência Molecular , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Ligação Proteica , Transporte Proteico , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
6.
Cell ; 146(5): 697-708, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21884932

RESUMO

AKT activation is associated with many malignancies, where AKT acts, in part, by inhibiting FOXO tumor suppressors. We show a converse role for AKT/FOXOs in acute myeloid leukemia (AML). Rather than decreased FOXO activity, we observed that FOXOs are active in ∼40% of AML patient samples regardless of genetic subtype. We also observe this activity in human MLL-AF9 leukemia allele-induced AML in mice, where either activation of Akt or compound deletion of FoxO1/3/4 reduced leukemic cell growth, with the latter markedly diminishing leukemia-initiating cell (LIC) function in vivo and improving animal survival. FOXO inhibition resulted in myeloid maturation and subsequent AML cell death. FOXO activation inversely correlated with JNK/c-JUN signaling, and leukemic cells resistant to FOXO inhibition responded to JNK inhibition. These data reveal a molecular role for AKT/FOXO and JNK/c-JUN in maintaining a differentiation blockade that can be targeted to inhibit leukemias with a range of genetic lesions.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Antígenos CD34/metabolismo , Apoptose , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Células Cultivadas , Modelos Animais de Doenças , Proteína Forkhead Box O3 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...