Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 19(18): 6126-6138, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37703098

RESUMO

We introduce automatic clustering as a computationally efficient tool for classifying and interpreting trajectories from simulations of photo-excited dynamics. Trajectories are treated as time-series data, with the features for clustering selected by variance mapping of normalized data. The L2-norm and dynamic time warping are proposed as suitable similarity measures for calculating the distance matrices, and these are clustered using the unsupervised density-based DBSCAN algorithm. The silhouette coefficient and the number of trajectories classified as noise are used as quality measures for the clustering. The ability of clustering to provide rapid overview of large and complex trajectory data sets, and its utility for extracting chemical and physical insight, is demonstrated on trajectories corresponding to the photochemical ring-opening reaction of 1,3-cyclohexadiene, noting that the clustering can be used to generate reduced dimensionality representations in an unbiased manner.

2.
J Chem Theory Comput ; 19(10): 2721-2734, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37129988

RESUMO

An inversion method for time-resolved data from ultrafast experiments is introduced, based on forward-optimization in a trajectory basis. The method is applied to experimental data from X-ray scattering of the photochemical ring-opening reaction of 1,3-cyclohexadiene and electron diffraction of the photodissociation of CS2. In each case, inversion yields a model that reproduces the experimental data, identifies the main dynamic motifs, and agrees with independent experimental observations. Notably, the method explicitly accounts for continuity constraints and is robust even for noisy data.

3.
J Chem Phys ; 157(16): 164305, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36319419

RESUMO

We have observed details of the internal motion and dissociation channels in photoexcited carbon disulfide (CS2) using time-resolved x-ray scattering (TRXS). Photoexcitation of gas-phase CS2 with a 200 nm laser pulse launches oscillatory bending and stretching motion, leading to dissociation of atomic sulfur in under a picosecond. During the first 300 fs following excitation, we observe significant changes in the vibrational frequency as well as some dissociation of the C-S bond, leading to atomic sulfur in the both 1D and 3P states. Beyond 1400 fs, the dissociation is consistent with primarily 3P atomic sulfur dissociation. This channel-resolved measurement of the dissociation time is based on our analysis of the time-windowed dissociation radial velocity distribution, which is measured using the temporal Fourier transform of the TRXS data aided by a Hough transform that extracts the slopes of linear features in an image. The relative strength of the two dissociation channels reflects both their branching ratio and differences in the spread of their dissociation times. Measuring the time-resolved dissociation radial velocity distribution aids the resolution of discrepancies between models for dissociation proposed by prior photoelectron spectroscopy work.

4.
Phys Chem Chem Phys ; 24(25): 15416-15427, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35707953

RESUMO

The structural dynamics of photoexcited gas-phase carbon disulfide (CS2) molecules are investigated using ultrafast electron diffraction. The dynamics were triggered by excitation of the optically bright 1B2(1Σu+) state by an ultraviolet femtosecond laser pulse centred at 200 nm. In accordance with previous studies, rapid vibrational motion facilitates a combination of internal conversion and intersystem crossing to lower-lying electronic states. Photodissociation via these electronic manifolds results in the production of CS fragments in the electronic ground state and dissociated singlet and triplet sulphur atoms. The structural dynamics are extracted from the experiment using a trajectory-fitting filtering approach, revealing the main characteristics of the singlet and triplet dissociation pathways. Finally, the effect of the time-resolution on the experimental signal is considered and an outlook to future experiments provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...