Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 6(45)2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33158874

RESUMO

Charge density wave (CDW) order has been shown to compete and coexist with superconductivity in underdoped cuprates. Theoretical proposals for the CDW order include an unconventional d-symmetry form factor CDW, evidence for which has emerged from measurements, including resonant soft x-ray scattering (RSXS) in YBa2Cu3O6+x (YBCO). Here, we revisit RSXS measurements of the CDW symmetry in YBCO, using a variation in the measurement geometry to provide enhanced sensitivity to orbital symmetry. We show that the (0 0.31 L) CDW peak measured at the Cu L edge is dominated by an s form factor rather than a d form factor as was reported previously. In addition, by measuring both (0.31 0 L) and (0 0.31 L) peaks, we identify a pronounced difference in the orbital symmetry of the CDW order along the a and b axes, with the CDW along the a axis exhibiting orbital order in addition to charge order.

2.
Science ; 351(6273): 576-8, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26912696

RESUMO

In underdoped cuprate superconductors, a rich competition occurs between superconductivity and charge density wave (CDW) order. Whether rotational symmetry-breaking (nematicity) occurs intrinsically and generically or as a consequence of other orders is under debate. Here, we employ resonant x-ray scattering in stripe-ordered superconductors (La,M)2CuO4 to probe the relationship between electronic nematicity of the Cu 3d orbitals, structure of the (La,M)2O2 layers, and CDW order. We find distinct temperature dependences for the structure of the (La,M)2O2 layers and the electronic nematicity of the CuO2 planes, with only the latter being enhanced by the onset of CDW order. These results identify electronic nematicity as an order parameter that is distinct from a purely structural order parameter in underdoped striped cuprates.

3.
Nat Mater ; 15(6): 616-20, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26878313

RESUMO

Recent theories of charge-density-wave (CDW) order in high-temperature superconductors have predicted a primarily d CDW orbital symmetry. Here, we report on the orbital symmetry of CDW order in the canonical cuprate superconductors La1.875Ba0.125CuO4 (LBCO) and YBa2Cu3O6.67 (YBCO), using resonant soft X-ray scattering and a model mapped to the CDW orbital symmetry. From measurements sensitive to the O sublattice, we conclude that LBCO has predominantly s' CDW orbital symmetry, in contrast to the d orbital symmetry recently reported in other cuprates. Furthermore, we show for YBCO that the CDW orbital symmetry differs along the a and b crystal axes and that these both differ from LBCO. This work highlights CDW orbital symmetry as an additional key property that distinguishes the different cuprate families. We discuss how the CDW symmetry may be related to the '1/8-anomaly' and to static spin ordering.

4.
Nat Mater ; 14(8): 796-800, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26006005

RESUMO

Charge-ordered ground states permeate the phenomenology of 3d-based transition metal oxides, and more generally represent a distinctive hallmark of strongly correlated states of matter. The recent discovery of charge order in various cuprate families has fuelled new interest into the role played by this incipient broken symmetry within the complex phase diagram of high-T(c) superconductors. Here, we use resonant X-ray scattering to resolve the main characteristics of the charge-modulated state in two cuprate families: Bi2Sr(2-x)La(x)CuO(6+δ) (Bi2201) and YBa2Cu3O(6+y) (YBCO). We detect no signatures of spatial modulations along the nodal direction in Bi2201, thus clarifying the inter-unit-cell momentum structure of charge order. We also resolve the intra-unit-cell symmetry of the charge-ordered state, which is revealed to be best represented by a bond order with modulated charges on the O-2p orbitals and a prominent d-wave character. These results provide insights into the origin and microscopic description of charge order in cuprates, and its interplay with superconductivity.

5.
Phys Rev Lett ; 113(10): 107002, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25238378

RESUMO

The competition between superconductivity and charge density wave (CDW) order in underdoped cuprates has now been widely reported, but the role of disorder in this competition has yet to be fully resolved. A central question is whether disorder sets the length scale of the CDW order, for instance by pinning charge density fluctuations or disrupting an otherwise long-range order. Using resonant soft x-ray scattering, we investigate the sensitivity of CDW order in YBa2Cu3O6+x (YBCO) to varying levels of oxygen disorder. We find that quench cooling YBCO6.67 (YBCO6.75) crystals to destroy their o-V and o-VIII (o-III) chains decreases the intensity of the CDW superlattice peak by a factor of 1.9 (1.3), but has little effect on the CDW correlation length, incommensurability, and temperature dependence. This reveals that while quenched oxygen disorder influences the CDW order parameter, the spatial extent of the CDW order is insensitive to the level of quenched oxygen disorder and may instead be a consequence of competition with superconductivity.

7.
Phys Rev Lett ; 110(1): 017001, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23383826

RESUMO

A prevailing description of the stripe phase in underdoped cuprate superconductors is that the charge carriers (holes) phase segregate on a microscopic scale into hole-rich and hole-poor regions. We report resonant elastic x-ray scattering measurements of stripe-ordered La(1.475)Nd(0.4)Sr(0.125)CuO(4) at the Cu L and O K absorption edges that identify an additional feature of stripe order. Analysis of the energy dependence of the scattering intensity reveals that the dominant signature of the stripe order is a spatial modulation in the energies of Cu 3d and O 2p states rather than the large modulation of the charge density (valence) envisioned in the common stripe paradigm. These energy shifts are interpreted as a spatial modulation of the electronic structure and may point to a valence-bond-solid interpretation of the stripe phase.


Assuntos
Cobre/química , Elétrons , Modelos Químicos , Oxigênio/química , Difração de Raios X/métodos , Condutividade Elétrica , Espectroscopia por Absorção de Raios X/métodos
8.
Phys Rev Lett ; 109(16): 167001, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23215115

RESUMO

Recently, charge density wave (CDW) order in the CuO(2) planes of underdoped YBa(2)Cu(3)O(6+δ) was detected using resonant soft x-ray scattering. An important question remains: is the chain layer responsible for this charge ordering? Here, we explore the energy and polarization dependence of the resonant scattering intensity in a detwinned sample of YBa(2)Cu(3)O(6.75) with ortho-III oxygen ordering in the chain layer. We show that the ortho-III CDW order in the chains is distinct from the CDW order in the planes. The ortho-III structure gives rise to a commensurate superlattice reflection at Q=[0.33 0 L] whose energy and polarization dependence agrees with expectations for oxygen ordering and a spatial modulation of the Cu valence in the chains. Incommensurate peaks at [0.30 0 L] and [0 0.30 L] from the CDW order in the planes are shown to be distinct in Q as well as their temperature, energy, and polarization dependence, and are thus unrelated to the structure of the chain layer. Moreover, the energy dependence of the CDW order in the planes is shown to result from a spatial modulation of energies of the Cu 2p to 3d(x(2)-y(2)) transition, similar to stripe-ordered 214 cuprates.

10.
Rev Sci Instrum ; 82(7): 073104, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21806169

RESUMO

We describe the design, construction, and performance of a 4-circle in-vacuum diffractometer for resonant elastic soft x-ray scattering. The diffractometer, installed on the resonant elastic and inelastic x-ray scattering beamline at the Canadian Light Source, includes 9 in-vacuum motions driven by in-vacuum stepper motors and operates in ultra-high vacuum at base pressure of 2 × 10(-10) Torr. Cooling to a base temperature of 18 K is provided with a closed-cycle cryostat. The diffractometer includes a choice of 3 photon detectors: a photodiode, a channeltron, and a 2D sensitive channelplate detector. Along with variable slit and filter options, these detectors are suitable for studying a wide range of phenomena having both weak and strong diffraction signals. Example measurements of diffraction and reflectivity in Nd-doped (La,Sr)(2)CuO(4) and thin film (Ga,Mn)As are shown.

11.
Sci Rep ; 1: 182, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22355697

RESUMO

An alternative measure of x-ray absorption spectroscopy (XAS) called inverse partial fluorescence yield (IPFY) has recently been developed that is both bulk sensitive and free of saturation effects. Here we show that the angle dependence of IPFY can provide a measure directly proportional to the total x-ray absorption coefficient, µ(E). In contrast, fluorescence yield (FY) and electron yield (EY) spectra are offset and/or distorted from µ(E) by an unknown and difficult to measure amount. Moreover, our measurement can determine µ(E) in absolute units with no free parameters by scaling to µ(E) at the non-resonant emission energy. We demonstrate this technique with measurements on NiO and NdGaO(3). Determining µ(E) across edge-steps enables the use of XAS as a non-destructive measure of material composition. In NdGaO(3), we also demonstrate the utility of IPFY for insulating samples, where neither EY or FY provide reliable spectra due to sample charging and self-absorption effects, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...