Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AJNR Am J Neuroradiol ; 37(4): 621-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26744442

RESUMO

BACKGROUND AND PURPOSE: Tumor location has been shown to be a significant prognostic factor in patients with glioblastoma. The purpose of this study was to characterize glioblastoma lesions by identifying MR imaging voxel-based tumor location features that are associated with tumor molecular profiles, patient characteristics, and clinical outcomes. MATERIALS AND METHODS: Preoperative T1 anatomic MR images of 384 patients with glioblastomas were obtained from 2 independent cohorts (n = 253 from the Stanford University Medical Center for training and n = 131 from The Cancer Genome Atlas for validation). An automated computational image-analysis pipeline was developed to determine the anatomic locations of tumor in each patient. Voxel-based differences in tumor location between good (overall survival of >17 months) and poor (overall survival of <11 months) survival groups identified in the training cohort were used to classify patients in The Cancer Genome Atlas cohort into 2 brain-location groups, for which clinical features, messenger RNA expression, and copy number changes were compared to elucidate the biologic basis of tumors located in different brain regions. RESULTS: Tumors in the right occipitotemporal periventricular white matter were significantly associated with poor survival in both training and test cohorts (both, log-rank P < .05) and had larger tumor volume compared with tumors in other locations. Tumors in the right periatrial location were associated with hypoxia pathway enrichment and PDGFRA amplification, making them potential targets for subgroup-specific therapies. CONCLUSIONS: Voxel-based location in glioblastoma is associated with patient outcome and may have a potential role for guiding personalized treatment.


Assuntos
Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Glioblastoma/mortalidade , Glioblastoma/patologia , Processamento de Imagem Assistida por Computador/métodos , Adulto , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Estudos de Coortes , Feminino , Glioblastoma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Prognóstico
2.
AJNR Am J Neuroradiol ; 35(7): 1263-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24831600

RESUMO

BACKGROUND AND PURPOSE: Recently identified molecular subgroups of medulloblastoma have shown potential for improved risk stratification. We hypothesized that distinct MR imaging features can predict these subgroups. MATERIALS AND METHODS: All patients with a diagnosis of medulloblastoma at one institution, with both pretherapy MR imaging and surgical tissue, served as the discovery cohort (n = 47). MR imaging features were assessed by 3 blinded neuroradiologists. NanoString-based assay of tumor tissues was conducted to classify the tumors into the 4 established molecular subgroups (wingless, sonic hedgehog, group 3, and group 4). A second pediatric medulloblastoma cohort (n = 52) from an independent institution was used for validation of the MR imaging features predictive of the molecular subtypes. RESULTS: Logistic regression analysis within the discovery cohort revealed tumor location (P < .001) and enhancement pattern (P = .001) to be significant predictors of medulloblastoma subgroups. Stereospecific computational analyses confirmed that group 3 and 4 tumors predominated within the midline fourth ventricle (100%, P = .007), wingless tumors were localized to the cerebellar peduncle/cerebellopontine angle cistern with a positive predictive value of 100% (95% CI, 30%-100%), and sonic hedgehog tumors arose in the cerebellar hemispheres with a positive predictive value of 100% (95% CI, 59%-100%). Midline group 4 tumors presented with minimal/no enhancement with a positive predictive value of 91% (95% CI, 59%-98%). When we used the MR imaging feature-based regression model, 66% of medulloblastomas were correctly predicted in the discovery cohort, and 65%, in the validation cohort. CONCLUSIONS: Tumor location and enhancement pattern were predictive of molecular subgroups of pediatric medulloblastoma and may potentially serve as a surrogate for genomic testing.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Proteínas de Neoplasias/metabolismo , Proteínas Wnt/metabolismo , Adolescente , Adulto , Neoplasias Cerebelares/classificação , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Meduloblastoma/classificação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Método Simples-Cego , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA