Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Foods Hum Nutr ; 71(3): 272-6, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27277074

RESUMO

Resveratrol and pterostilbene are natural products that are present in plants and have been incorporated into various dietary supplements. Numerous beneficial pharmacologic effects have been reported for these stilbenes; however, the mechanism by which these compounds exert a cytotoxic effect in RAW 264.7 macrophages has not been well characterized. We have previously described that resveratrol is toxic to these tumor-derived macrophages and that stimulation with lipopolysaccharide (LPS) reduces resveratrol toxicity via a mechanism that involves activation of toll like receptor 4. In the present work, we examined the cellular and molecular effects of resveratrol and the related compound pterostilbene by determining cell viability and caspase 3 activity in control and LPS-stimulated RAW 264.7 macrophages incubated with these stilbenes for 24 h. We found that LPS stimulation reduced the cytotoxicity of resveratrol but not of pterostilbene in these cells. When examined for effects on caspase 3 activation after a 24 h incubation, resveratrol and pterostilbene were each found to separately and significantly increase caspase 3 activity in these cells. LPS stimulation prevented caspase 3 activation by pterostilbene and reduced caspase 3 activation by resveratrol in RAW 264.7 macrophages. The data presented here indicate that LPS induces a phenotype switch in tumor-derived RAW 264.7 macrophages in which cells experiencing LPS in the presence of resveratrol or pterostilbene become less likely to activate the pro-apoptotic factor caspase 3.


Assuntos
Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Estilbenos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Caspase 3/genética , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , Resveratrol , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA