Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Earth Syst Sci Data ; 12(2): 1123-1139, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36419961

RESUMO

Light emerging from natural water bodies and measured by radiometers contains information about the local type and concentrations of phytoplankton, non-algal particles and colored dissolved organic matter in the underlying waters. An increase in spectral resolution in forthcoming satellite and airborne remote sensing missions is expected to lead to new or improved capabilities for characterizing aquatic ecosystems. Such upcoming missions include NASA's Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission; the NASA Surface Biology and Geology designated observable mission; and NASA Airborne Visible/Infrared Imaging Spectrometer - Next Generation (AVIRIS-NG) airborne missions. In anticipation of these missions, we present an organized dataset of geographically diverse, quality-controlled, high spectral resolution inherent and apparent optical property (IOP-AOP) aquatic data. The data are intended to be of use to increase our understanding of aquatic optical properties, to develop aquatic remote sensing data product algorithms, and to perform calibration and validation activities for forthcoming aquatic-focused imaging spectrometry missions. The dataset is comprised of contributions from several investigators and investigating teams collected over a range of geographic areas and water types, including inland waters, estuaries, and oceans. Specific in situ measurements include remote-sensing reflectance, irradiance reflectance, and coefficients describing particulate absorption, particulate attenuation, non-algal particulate absorption, colored dissolved organic matter absorption, phytoplankton absorption, total absorption, total attenuation, particulate backscattering, and total backscattering. The dataset can be downloaded from https://doi.org/10.1594/PANGAEA.902230 (Casey et al., 2019).

2.
PLoS One ; 13(12): e0207809, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30521537

RESUMO

Understanding how turbulence impacts marine floc formation and breakup is key to predicting particulate carbon transport in the ocean. While floc formation and sinking rate has been studied in the laboratory and in-situ, the breakup response to turbulence has attracted less attention. To address this problem, the breakup response of bentonite clay particles flocculated in salt water was studied experimentally. Flocs were grown in a large aggregation tank under unmixed and mixed aggregation conditions and then subjected to turbulent pipe flow. Particle size was quantified using microscope imaging and in-situ measurements obtained from standard optical oceanographic instruments; a Sequoia Scientific LISST-100X and two WET Labs ac-9 spectrophotometers. The LISST instrument was found to capture the breakup response of flocs to turbulent energy, though the resulting particle size spectra appear to have underestimated the largest floc lengthscales in the flow while overestimating the abundance of primary particles. Floc breakup and the resulting shift towards smaller particles caused an increase in spectral slope of attenuation as measured by the ac-9 instruments. The Kolmogorov lengthscale was not found to have a limiting effect on floc size in these experiments. While the flocs were found to decrease in overall strength over the course of the two-month experimental time period, repeatable breakup responses to turbulence exposure were observed. Hydrodynamic conditions during floc formation were found to have a large influence on floc strength and breakup response. A non-constant strength exponent was observed for flocs formed with more energetic mixing. Increased turbulence from mixing during aggregation was found to increase floc fractal dimension and apparent density, resulting in a shift in the breakup relationships to higher turbulence dissipation rates. The results suggest that marine particle aggregation and vertical carbon transport concepts should include the turbulence energy responsible for aggregate formation and the resulting impact on floc strength, density, and the disruption potential.


Assuntos
Argila/química , Bentonita/química , Carbono/química , Ciclo do Carbono , Coloides/química , Floculação , Hidrodinâmica , Modelos Teóricos , Oceanos e Mares , Tamanho da Partícula
3.
Prog Oceanogr ; 160: 186-212, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30573929

RESUMO

Ocean color measured from satellites provides daily global, synoptic views of spectral waterleaving reflectances that can be used to generate estimates of marine inherent optical properties (IOPs). These reflectances, namely the ratio of spectral upwelled radiances to spectral downwelled irradiances, describe the light exiting a water mass that defines its color. IOPs are the spectral absorption and scattering characteristics of ocean water and its dissolved and particulate constituents. Because of their dependence on the concentration and composition of marine constituents, IOPs can be used to describe the contents of the upper ocean mixed layer. This information is critical to further our scientific understanding of biogeochemical oceanic processes, such as organic carbon production and export, phytoplankton dynamics, and responses to climatic disturbances. Given their importance, the international ocean color community has invested significant effort in improving the quality of satellite-derived IOP products, both regionally and globally. Recognizing the current influx of data products into the community and the need to improve current algorithms in anticipation of new satellite instruments (e.g., the global, hyperspectral spectroradiometer of the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission), we present a synopsis of the current state of the art in the retrieval of these core optical properties. Contemporary approaches for obtaining IOPs from satellite ocean color are reviewed and, for clarity, separated based their inversion methodology or the type of IOPs sought. Summaries of known uncertainties associated with each approach are provided, as well as common performance metrics used to evaluate them. We discuss current knowledge gaps and make recommendations for future investment for upcoming missions whose instrument characteristics diverge sufficiently from heritage and existing sensors to warrant reassessing current approaches.

4.
Ecol Appl ; 28(3): 749-760, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29509310

RESUMO

The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite-based sensors can repeatedly record the visible and near-infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100-m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short-wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14-bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3-d repeat low-Earth orbit could sample 30-km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications.


Assuntos
Biodiversidade , Tecnologia de Sensoriamento Remoto/instrumentação , Oceanos e Mares , Fitoplâncton
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...