Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 10(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33113964

RESUMO

In this work, iron oxide nanoparticles produced using the laser ablation technique were studied in order to determine the characteristics of these nanoparticles as a function of the laser energy for the possible application in magnetic hyperthermia. Nanoparticles were obtained by varying the power of the laser considering values of 90, 173, 279 and 370 mJ. The morphology of these nanoparticles was determined using the dynamic light scattering (DLS) and scattering transmission electron microscopy (STEM) techniques, confirming that the size of the particles was in the order of nanometers. A great influence of the laser power on the particle size was also observed, caused by the competition between the energy and the temperature. The composition was determined by X-ray diffraction and Raman spectroscopy, showing the presence of magnetite, maghemite and hematite. The hyperthermia measurements showed that the temperature rise of the iron oxide nanoparticles was not greatly influenced by the energy change, the heating capacity of magnetic NPs is quantified by the specific absorption rate (SAR), that tends to decrease with increasing energy, which indicates a dependence of these values on the nanoparticles concentration.

2.
Front Neurosci ; 14: 446, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431593

RESUMO

Neural responses of oddball tasks can be used as a physiological biomarker to evaluate the brain potential of information processing under the assumption that the differential contribution of deviant stimuli can be assessed accurately. Nevertheless, the non-stationarity of neural activity causes the brain networks to fluctuate hugely in time, deteriorating the estimation of pairwise synergies. To deal with the time variability of neural responses, we have developed a piecewise multi-subject analysis that is applied over a set of time intervals within the stationary assumption holds. To segment the whole stimulus-locked epoch into multiple temporal windows, we experimented with two approaches for piecewise segmentation of EEG recordings: a fixed time-window, at which the estimates of FC measures fulfill a given confidence level, and variable time-window, which is segmented at the change points of the time-varying classifier performance. Employing the weighted Phase Lock Index as a functional connectivity metric, we have presented the validation in a real-world EEG data, proving the effectiveness of variable time segmentation for connectivity extraction when combined with a supervised thresholding approach. Consequently, we performed a piecewise group-level analysis of electroencephalographic data that deals with non-stationary functional connectivity measures, evaluating more carefully the contribution of a link node-set in discriminating between the labeled oddball responses.

3.
Front Neurosci ; 14: 155, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161520

RESUMO

Selection of the time-window mainly affects the effectiveness of piecewise feature extraction procedures. We present an enhanced bag-of-patterns representation that allows capturing the higher-level structures of brain dynamics within a wide window range. So, we introduce augmented instance representations with extended window lengths for the short-time Common Spatial Pattern algorithm. Based on multiple-instance learning, the relevant bag-of-patterns are selected by a sparse regression to feed a bag classifier. The proposed higher-level structure representation promotes two contributions: (i) accuracy improvement of bi-conditional tasks, (ii) A better understanding of dynamic brain behavior through the learned sparse regression fits. Using a support vector machine classifier, the achieved performance on a public motor imagery dataset (left-hand and right-hand tasks) shows that the proposed framework performs very competitive results, providing robustness to the time variation of electroencephalography recordings and favoring the class separability.

4.
Brain Topogr ; 32(2): 229-239, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30341590

RESUMO

Accurate source localization of electroencephalographic (EEG) signals requires detailed information about the geometry and physical properties of head tissues. Indeed, these strongly influence the propagation of neural activity from the brain to the sensors. Finite difference methods (FDMs) are head modelling approaches relying on volumetric data information, which can be directly obtained using magnetic resonance (MR) imaging. The specific goal of this study is to develop a computationally efficient FDM solution that can flexibly integrate voxel-wise conductivity and anisotropy information. Given the high computational complexity of FDMs, we pay particular attention to attain a very low numerical error, as evaluated using exact analytical solutions for spherical volume conductor models. We then demonstrate the computational efficiency of our FDM numerical solver, by comparing it with alternative solutions. Finally, we apply the developed head modelling tool to high-resolution MR images from a real experimental subject, to demonstrate the potential added value of incorporating detailed voxel-wise conductivity and anisotropy information. Our results clearly show that the developed FDM can contribute to a more precise head modelling, and therefore to a more reliable use of EEG as a brain imaging tool.


Assuntos
Eletroencefalografia/métodos , Neuroimagem/métodos , Algoritmos , Anisotropia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico , Interpretação Estatística de Dados , Eletroencefalografia/estatística & dados numéricos , Cabeça , Humanos , Imageamento por Ressonância Magnética , Modelos Anatômicos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...