Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 13: 905756, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721729

RESUMO

The term inflammatory arthritis defines a family of diseases, including rheumatoid arthritis (RA), caused by an overactive immune system, and influenced by host aspects including sex, reproductive state, and stress. Prolactin (PRL) is a sexually dimorphic, reproductive, stress-related hormone long-linked to RA under the general assumption that it aggravates the disease. However, this conclusion remains controversial since PRL has both negative and positive outcomes in RA that may depend on the hormone circulating levels, synthesis by joint tissues, and complex interactions at the inflammatory milieu. The inflamed joint is rich in matrix metalloproteases that cleave PRL to vasoinhibin, a PRL fragment with proinflammatory effects and the ability to inhibit the hyperpermeability and growth of blood vessels. This review addresses this field with the idea that explanatory mechanisms lie within the PRL/vasoinhibin axis, an integrative framework influencing not only the levels of systemic and local PRL, but also the proteolytic conversion of PRL to vasoinhibin, as vasoinhibin itself has dual actions on joint inflammation. In this review, we discuss recent findings from mouse models suggesting the upregulation of endogenous vasoinhibin by the pro-inflammatory environment and showing dichotomous actions and signaling mechanisms of PRL and vasoinhibin on joint inflammation that are cell-specific and context-dependent. We hypothesize that these opposing actions work together to balance the inflammatory response and provide new insights for understanding the pathophysiology of RA and the development of new treatments.


Assuntos
Artrite Reumatoide , Prolactina , Animais , Inflamação , Camundongos , Prolactina/metabolismo , Ligação Proteica
2.
J Neuroendocrinol ; 32(11): e12858, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32449569

RESUMO

The hormone prolactin (PRL) is emerging as an important regulator of ocular blood vessels. PRL is pro-angiogenic and acquires anti-angiogenic properties after undergoing proteolytic cleavage to the PRL fragment, vasoinhibin. The vascularisation of the rodent retina develops after birth when it rapidly expands until completion at the end of the first postnatal week. Exposure of newborn mice to high oxygen levels lowers the rate of blood vessel growth. In the present study, we investigated whether PRL treatment modifies the vascularisation of the retina in newborn mice exposed to high oxygen or to normoxia and whether the retinal conversion of PRL to vasoinhibin may be altered in the neonate. Newborn mice and their nursing mothers were subjected to 75% oxygen or to normoxia from postnatal day (P) 6 to P8 (group 1) or from P2 to P5 (group 2). PRL (2 µg g-1 , i.p., twice a day) or vehicle was injected from P5 to P8 in group 1 and from P1 to P5 in group 2. PRL treatment reduced the retinal inhibition of blood vessel growth and the increase in vascular regression induced by hyperoxia as revealed by immunofluorescence staining of blood vessels and the expression of angiogenesis and apoptosis markers. The pro-angiogenic effect may involve a reduced conversion of PRL to vasoinhibin. Incubation of PRL with retinal extracts showed reduced activity of the PRL-cleaving protease, cathepsin D, in the neonate vs the adult retina that was further reduced under hyperoxia. PRL and the PRL receptor mRNA were expressed at higher levels in the retina at P8 than in the adult, whereas endogenous PRL was undetectable in the circulation at P8. We conclude that PRL has a pro-angiogenic effect in the neonate retina as a result of its reduced conversion to vasoinhibin and that PRL produced by the retina may help promote physiological vascularisation after birth.


Assuntos
Hiperóxia , Neovascularização Fisiológica , Prolactina , Vasos Retinianos , Animais , Feminino , Masculino , Camundongos , Gravidez , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Hiperóxia/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Prolactina/sangue , Prolactina/metabolismo , Prolactina/farmacologia , Receptores da Prolactina/efeitos dos fármacos , Receptores da Prolactina/metabolismo , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/crescimento & desenvolvimento , Retinopatia da Prematuridade/patologia
3.
EBioMedicine ; 7: 35-49, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27322457

RESUMO

The identification of pathways necessary for retinal pigment epithelium (RPE) function is fundamental to uncover therapies for blindness. Prolactin (PRL) receptors are expressed in the retina, but nothing is known about the role of PRL in RPE. Using the adult RPE 19 (ARPE-19) human cell line and mouse RPE, we identified the presence of PRL receptors and demonstrated that PRL is necessary for RPE cell survival via anti-apoptotic and antioxidant actions. PRL promotes the antioxidant capacity of ARPE-19 cells by reducing glutathione. It also blocks the hydrogen peroxide-induced increase in deacetylase sirtuin 2 (SIRT2) expression, which inhibits the TRPM2-mediated intracellular Ca(2+) rise associated with reduced survival under oxidant conditions. RPE from PRL receptor-null (prlr(-/-)) mice showed increased levels of oxidative stress, Sirt2 expression and apoptosis, effects that were exacerbated in animals with advancing age. These observations identify PRL as a regulator of RPE homeostasis.


Assuntos
Envelhecimento/fisiologia , Prolactina/metabolismo , Epitélio Pigmentado da Retina/citologia , Sirtuína 2/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Apoptose/efeitos dos fármacos , Feminino , Glutationa/metabolismo , Humanos , Masculino , Camundongos , Prolactina/genética , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Sirtuína 2/genética , Canais de Cátion TRPM/genética
4.
Cell Mol Life Sci ; 73(15): 2929-48, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27026299

RESUMO

Rheumatoid arthritis (RA) is a chronic, autoimmune, inflammatory disease destroying articular cartilage and bone. The female preponderance and the influence of reproductive states in RA have long linked this disease to sexually dimorphic, reproductive hormones such as prolactin (PRL). PRL has immune-enhancing properties and increases in the circulation of some patients with RA. However, PRL also suppresses the immune system, stimulates the formation and survival of joint tissues, acquires antiangiogenic properties upon its cleavage to vasoinhibins, and protects against joint destruction and inflammation in the adjuvant-induced model of RA. This review addresses risk factors for RA linked to PRL, the effects of PRL and vasoinhibins on joint tissues, blood vessels, and immune cells, and the clinical and experimental data associating PRL with RA. This information provides important insights into the pathophysiology of RA and highlights protective actions of the PRL/vasoinhibin axis that could lead to therapeutic benefits.


Assuntos
Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Cartilagem Articular/patologia , Inflamação/patologia , Articulações/patologia , Prolactina/imunologia , Inibidores da Angiogênese/imunologia , Animais , Artrite Reumatoide/epidemiologia , Artrite Reumatoide/fisiopatologia , Cartilagem Articular/irrigação sanguínea , Cartilagem Articular/imunologia , Cartilagem Articular/fisiopatologia , Feminino , Humanos , Tolerância Imunológica , Imunidade Celular , Inflamação/epidemiologia , Inflamação/imunologia , Inflamação/fisiopatologia , Articulações/irrigação sanguínea , Articulações/imunologia , Articulações/fisiopatologia , Masculino , Reprodução , Fatores Sexuais , Estresse Fisiológico , Estresse Psicológico
5.
Psychoneuroendocrinology ; 44: 123-32, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24767626

RESUMO

The hormone prolactin (PRL) regulates neuroendocrine and emotional stress responses. It is found in the hypothalamus, where the protein is partially cleaved to vasoinhibins, a family of N-terminal antiangiogenic PRL fragments ranging from 14 to 18kDa molecular masses, with unknown effects on the stress response. Here, we show that the intracerebroventricular administration of a recombinant vasoinhibin, containing the first 123 amino acids of human PRL that correspond to a 14kDa PRL, exerts anxiogenic and depressive-like effects detected in the elevated plus-maze, the open field, and the forced swimming tests. To investigate whether stressor exposure affects the generation of vasoinhibins in the hypothalamus, the concentrations of PRL mRNA, PRL, and vasoinhibins were evaluated in hypothalamic extracts of virgin female rats immobilized for 30min at different time points after stress onset. The hypothalamic levels of PRL mRNA and protein were higher at 60min but declined at 360min to levels seen in non-stressed animals. The elevation of hypothalamic PRL did not correlate with the stress-induced increase in circulating PRL levels, nor was it modified by blocking adenohypophyseal PRL secretion with bromocriptine. A vasoinhibin having an electrophoretic migration rate corresponding to 17kDa was detected in the hypothalamus. Despite the elevation in hypothalamic PRL, the levels of this hypothalamic vasoinhibin were similar in stressed and non-stressed rats. Stress reduced the rate of cleavage of PRL to this vasoinhibin as shown by the incubation of recombinant PRL with hypothalamic extracts from stressed rats. These results suggest that vasoinhibins are potent anxiogenic and depressive factors and that stress increases PRL levels in the hypothalamus partly by reducing its conversion to vasoinhibins. The reciprocal interplay between PRL and vasoinhibins may represent an effective mechanism to regulate anxiety and depression.


Assuntos
Comportamento Animal/efeitos dos fármacos , Proteínas de Ciclo Celular/farmacologia , Hipotálamo/metabolismo , Prolactina/metabolismo , Animais , Ansiedade/metabolismo , Comportamento Animal/fisiologia , Depressão/metabolismo , Feminino , Ratos , Ratos Wistar
6.
Gen Comp Endocrinol ; 203: 132-6, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24508497

RESUMO

Arthritic disorders are family of diseases that have existed since vertebrate life began. Their etiology is multifactorial with genetic, environmental, and gender factors driving chronic joint inflammation. Prolactin is a sexually dimorphic hormone in mammals that can act to both promote and ameliorate rheumatic diseases. It is found in all vertebrate groups where it exerts a wide diversity of actions. This review briefly addresses the presence and features of arthritic diseases in vertebrates, the effects of PRL on joint tissues and immune cells, and whether PRL actions could have contributed to the ubiquity of arthritis in nature. This comparative approach highlights the value of PRL as a biologically conserved factor influencing the development and progression of arthritis.


Assuntos
Artrite/genética , Artrite/imunologia , Filogenia , Prolactina/genética , Prolactina/imunologia , Animais , Humanos , Vertebrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA