Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-474653

RESUMO

The SARS-CoV-2 Omicron/BA.1 lineage emerged in late 2021 and rapidly displaced the Delta variant before being overtaken itself globally by, the Omicron/BA.2 lineage in early 2022. Here, we describe how Omicron BA.1 and BA.2 show a lower severity phenotype in a hamster model of pathogenicity which maps specifically to the spike gene. We further show that Omicron is attenuated in a lung cell line but replicates more rapidly, albeit to lower peak titres, in human primary nasal cells. This replication phenotype also maps to the spike gene. Omicron spike (including the emerging Omicron lineage BA.4) shows attenuated fusogenicity and a preference for cell entry via the endosomal route. We map the altered Omicron spike entry route and partially map the lower fusogenicity to the S2 domain, particularly the substitution N969K. Finally, we show that pseudovirus with Omicron spike, engineered in the S2 domain to confer a more Delta-like cell entry route retains the antigenic properties of Omicron. This shows a distinct separation between the genetic determinants of these two key Omicron phenotypes, raising the concerning possibility that future variants with large antigenic distance from currently circulating and vaccine strains will not necessarily display the lower intrinsic severity seen during Omicron infection.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20038331

RESUMO

Early in the COVID-19 pandemic, when cases were predominantly reported in the city of Wuhan, China, local outbreaks in Europe, North America, and Asia were largely predicted from imported cases on flights from Wuhan, potentially missing imports from other key source cities. Here, we account for importations from Wuhan and from other cities in China, combining COVID-19 prevalence estimates in 18 Chinese cities with estimates of flight passenger volume to predict for each day between early December 2019 to late February 2020 the number of cases exported from China. We predict that the main source of global case importation in early January was Wuhan, but due to the Wuhan lockdown and the rapid spread of the virus, the main source of case importation from mid February became Chinese cities outside of Wuhan. For destinations in Africa in particular, non-Wuhan cities were an important source of case imports (1 case from those cities for each case from Wuhan, range of model scenarios: 0.1-9.8). Our model predicts that 18.4 (8.5 - 100) COVID-19 cases were imported to 26 destination countries in Africa, with most of them (90%) predicted to have arrived between 7th January ({+/-}10 days) and 5th February ({+/-}3 days), and all of them predicted prior to the first case detections. We finally observed marked heterogeneities in expected imported cases across those locations. Our estimates shed light on shifting sources and local risks of case importation which can help focus surveillance efforts and guide public health policy during the final stages of the pandemic. We further provide a time window for the seeding of local epidemics in African locations, a key parameter for estimating expected outbreak size and burden on local health care systems and societies, that has yet to be defined in these locations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...