Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photosynth Res ; 159(1): 17-28, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38112862

RESUMO

Enhancing leaf photosynthetic capacity is essential for improving the yield of rice (Oryza sativa L.). Although the exploitation of natural genetic resources is considered a promising approach to enhance photosynthetic capacity, genomic factors related to the genetic diversity of leaf photosynthetic capacity have yet to be fully elucidated due to the limitation of measurement efficiency. In this study, we aimed to identify novel genomic regions for the net CO2 assimilation rate (A) by combining genome-wide association study (GWAS) and the newly developed rapid closed gas exchange system MIC-100. Using three MIC-100 systems in the field at the vegetative stage, we measured A of 168 temperate japonica rice varieties with six replicates for three years. We found that the modern varieties exhibited higher A than the landraces, while there was no significant relationship between the release year and A among the modern varieties. Our GWAS scan revealed two major peaks located on chromosomes 4 and 8, which were repeatedly detected in the different experiments and in the generalized linear modelling approach. We suggest that high-throughput gas exchange measurements combined with GWAS is a reliable approach for understanding the genetic mechanisms underlying photosynthetic diversities in crop species.


Assuntos
Oryza , Oryza/genética , Estudo de Associação Genômica Ampla , Fotossíntese/genética , Folhas de Planta/genética
2.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109472

RESUMO

For cosmic microwave background (CMB) polarization observations, calibration of detector polarization angles is essential. We have developed a fully remote controlled calibration system with a sparse wire grid that reflects linearly polarized light along the wire direction. The new feature is a remote-controlled system for regular calibration, which has not been possible in sparse wire grid calibrators in past experiments. The remote control can be achieved by two electric linear actuators that load or unload the sparse wire grid into a position centered on the optical axis of a telescope between the calibration time and CMB observation. Furthermore, the sparse wire grid can be rotated by using a motor. A rotary encoder and a gravity sensor are installed on the sparse wire grid to monitor the wire direction. They allow us to achieve detector polarization angle calibration with an expected systematic error of 0.08°. The calibration system will be installed in small-aperture telescopes at Simons Observatory.

3.
Rice (N Y) ; 16(1): 53, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38006407

RESUMO

Deep-water (DW) management in rice fields is a promising technique for efficient control of paddy weeds with reduced herbicide use. Maintaining a water depth of 10-20 cm for several weeks can largely suppress the weed growth, though it also inhibits rice growth because the DW management is usually initiated immediately after transplanting. Improving the DW resistance of rice during the initial growth stage is essential to avoid suppressing growth. In this study, we demonstrate a large genetic variation in the above-ground biomass (AGB) after the end of DW management among 165 temperate japonica varieties developed in Japan. Because the AGB closely correlated with plant length (PL) and tiller number (TN) at the early growth stage, we analyzed genomic regions associated with PL and TN by conducting a genome-wide association study. For PL, a major peak was detected on chromosome 3 (qPL3), which includes a gene encoding gibberellin biosynthesis, OsGA20ox1. The rice varieties with increased PL had a higher expression level of OsGA20ox1 as reported previously. For TN, a major peak was detected on chromosome 4 (qTN4), which includes NAL1 gene associated with leaf morphological development and panicle number. Although there was less difference in the expression level of NAL1 between genotypes, our findings suggest that an amino acid substitution in the exon region is responsible for the phenotypic changes. We also found that the rice varieties having alternative alleles of qPL3 and qTN4 showed significantly higher AGB than the varieties with the reference alleles. Our results suggest that OsGA20ox1 and NAL1 are promising genes for improving DW resistance in rice.

4.
Breed Sci ; 73(3): 332-342, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37840983

RESUMO

Many agronomic traits that are important in rice breeding are controlled by multiple genes. The extensive time and effort devoted so far to identifying and selecting such genes are still not enough to target multiple agronomic traits in practical breeding in Japan because of a lack of suitable plant materials in which to efficiently detect and validate beneficial alleles from diverse genetic resources. To facilitate the comprehensive analysis of genetic variation in agronomic traits among Asian cultivated rice, we developed 12 sets of chromosome segment substitution lines (CSSLs) with the japonica background, 11 of them in the same genetic background, using donors representing the genetic diversity of Asian cultivated rice. Using these materials, we overviewed the chromosomal locations of 1079 putative QTLs for seven agronomic traits and their allelic distribution in Asian cultivated rice through multiple linear regression analysis. The CSSLs will allow the effects of putative QTLs in the highly homogeneous japonica background to be validated.

5.
Rice (N Y) ; 16(1): 4, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36705856

RESUMO

Increasing the lodging resistance of rice through genetic improvement has been an important target in breeding. To further enhance the lodging resistance of high-yielding rice varieties amidst climate change, it is necessary to not only shorten culms but strengthen them as well. A landrace rice variety, Omachi, which was established more than 100 years ago, has the largest culm diameter and bending moment at breaking in the basal internodes among 135 temperate japonica accessions. Using unused alleles in such a landrace is an effective way to strengthen the culm. In this study, we performed quantitative trait locus (QTL) analysis to identify the genetic factors of culm strength of Omachi using recombinant inbred lines (RILs) derived from a cross between Omachi and Koshihikari, a standard variety in Japan. We identified three QTLs for the culm diameter of the 5th internode on chromosomes 3 (qCD3) and 7 (qCD7-1, qCD7-2). Among them, qCD7-2 was verified by QTL analysis using the F2 population derived from a cross between one of the RILs and Koshihikari. RNA-seq analysis of shoot apex raised 10 candidate genes underlying the region of qCD7-2. The increase in culm strength by accumulating Omachi alleles of qCD3, qCD7-1 and qCD7-2 was 25.0% in 2020. These QTLs for culm diameter pleiotropically increased spikelet number per panicle but did not affect days to heading or culm length. These results suggest that the Omachi alleles of qCD3, qCD7-1 and qCD7-2 are useful for breeding to increase lodging resistance and yield.

6.
Plant Physiol ; 191(1): 233-251, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36200882

RESUMO

Flaveria is a leading model for C4 plant evolution due to the presence of a dozen C3-C4 intermediate species, many of which are associated with a phylogenetic complex centered around Flaveria linearis. To investigate C4 evolution in Flaveria, we updated the Flaveria phylogeny and evaluated gas exchange, starch δ13C, and activity of C4 cycle enzymes in 19 Flaveria species and 28 populations within the F. linearis complex. A principal component analysis identified six functional clusters: (1) C3, (2) sub-C2, (3) full C2, (4) enriched C2, (5) sub-C4, and (6) fully C4 species. The sub-C2 species lacked a functional C4 cycle, while a gradient was present in the C2 clusters from little to modest C4 cycle activity as indicated by δ13C and enzyme activities. Three Yucatan populations of F. linearis had photosynthetic CO2 compensation points equivalent to C4 plants but showed little evidence for an enhanced C4 cycle, indicating they have an optimized C2 pathway that recaptures all photorespired CO2 in the bundle sheath (BS) tissue. All C2 species had enhanced aspartate aminotransferase activity relative to C3 species and most had enhanced alanine aminotransferase activity. These aminotransferases form aspartate and alanine from glutamate and in doing so could help return photorespiratory nitrogen (N) from BS to mesophyll cells, preventing glutamate feedback onto photorespiratory N assimilation. Their use requires upregulation of parts of the C4 metabolic cycle to generate carbon skeletons to sustain N return to the mesophyll, and thus could facilitate the evolution of the full C4 photosynthetic pathway.


Assuntos
Asteraceae , Flaveria , Flaveria/genética , Flaveria/metabolismo , Filogenia , Asteraceae/metabolismo , Dióxido de Carbono/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fotossíntese/genética , Plantas/metabolismo
7.
Metabolomics ; 18(12): 95, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36409428

RESUMO

INTRODUCTION: Plant cell walls play an important role in providing physical strength and defence against abiotic stress. Rice brittle culm (bc) mutants are a strength-decreased mutant because of abnormal cell walls, and it has been reported that the causative genes of bc mutants affect cell wall composition. However, the metabolic alterations in each organ of bc mutants have remained unknown. OBJECTIVES: To evaluate the metabolic changes in rice bc mutants, comparative analysis of the primary metabolites was conducted. METHODS: The primary metabolites in leaves, internodes, and nodes of rice bc mutants and wild-type control were measured using CE- and LC-MS/MS. Multivariate analyses using metabolomic data was performed. RESULTS: We found that mutations in each bc mutant had different effects on metabolism. For example, higher oxalate content was observed in bc3 and bc1 bc3 mutants, suggesting that surplus carbon that was not used for cell wall components might be used for oxalate synthesis. In addition, common metabolic alterations such as a decrease of sugar nucleotides in nodes were found in bc1 and Bc6, in which the causative genes are involved in cellulose accumulation. CONCLUSION: These results suggest that metabolic analysis of the bc mutants could elucidate the functions of causative gene and improve the cell wall components for livestock feed or bioethanol production.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Cromatografia Líquida , Metabolômica , Espectrometria de Massas em Tandem , Oxalatos/metabolismo
8.
Physiol Plant ; 174(6): e13825, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36377050

RESUMO

Photosynthetic induction, which is the response of the CO2 assimilation rate to a stepwise increase in light intensity, potentially affects plant carbon gain and crop productivity in field environments. Although natural variations in photosynthetic induction are determined by CO2 supply and its fixation, detailed factors, especially CO2 supply, are unclear. This study investigated photosynthesis at steady and non-steady states in three rice (Oryza sativa L.) genotypes: ARC 11094, Takanari and Koshihikari. Stomatal traits and water relations in the plants were evaluated to characterise CO2 supply. Photosynthetic induction in ARC 11094 and Takanari was superior to that in Koshihikari owing to an efficient CO2 supply. The CO2 supply in Takanari is attributed to its high stomatal density, small guard cell length and extensive root mass, whereas that in ARC 11094 is attributed to its high stomatal conductance per stoma and stomatal opening in leaves with insufficient water (i.e., anisohydric stomatal behaviour). Our results suggest that there are various mechanisms for realising an efficient CO2 supply during the induction response. These characteristics can be useful for improving photosynthetic induction and, thus, crop productivity in field environments in future breeding programmes.


Assuntos
Oryza , Oryza/fisiologia , Dióxido de Carbono/farmacologia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Plantas , Genótipo , Água
9.
Sci Rep ; 12(1): 15400, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100633

RESUMO

Severe lodging has recurrently occurred at strong typhoon's hitting in recent climate change. The identification of quantitative trait loci and their responsible genes associated with a strong culm and their pyramiding are important for developing high-yielding varieties with a superior lodging resistance. To evaluate the effects of four strong-culm genes on lodging resistance, the temperate japonica near isogenic line (NIL) with the introgressed SCM1 or SCM2 locus of the indica variety, Habataki and the other NIL with the introgeressed SCM3 or SCM4 locus of the tropical japonica variety, Chugoku 117 were developed. Then, we developed the pyramiding lines with double,triple and quadruple combinations derived from step-by-step crosses among NIL-SCM1-NIL-SCM4. Quadruple pyramiding line (NIL-SCM1 + 2 + 3 + 4) showed the largest culm diameter and the highest culm strength among the combinations and increased spikelet number due to the pleiotropic effects of these genes. Pyramiding of strong culm genes resulted in much increased culm thickness, culm strength and spikelet number due to their additive effect. SCM1 mainly contributed to enhance their pyramiding effect. These results in this study suggest the importance of identifying the combinations of superior alleles of strong culm genes among natural variation and pyramiding these genes for improving high-yielding varieties with a superior lodging resistance.


Assuntos
Oryza , Alelos , Feminino , Humanos , Oryza/genética , Gravidez , Gravidez Múltipla , Locos de Características Quantitativas
10.
J Exp Bot ; 73(10): 3109-3121, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35298629

RESUMO

Under field environments, fluctuating light conditions induce dynamic photosynthesis, which affects carbon gain by crop plants. Elucidating the natural genetic variations among untapped germplasm resources and their underlying mechanisms can provide an effective strategy to improve dynamic photosynthesis and, ultimately, improve crop yields through molecular breeding approaches. In this review, we first overview two processes affecting dynamic photosynthesis, namely (i) biochemical processes associated with CO2 fixation and photoprotection and (ii) gas diffusion processes from the atmosphere to the chloroplast stroma. Next, we review the intra- and interspecific variations in dynamic photosynthesis in relation to each of these two processes. It is suggested that plant adaptations to different hydrological environments underlie natural genetic variation explained by gas diffusion through stomata. This emphasizes the importance of the coordination of photosynthetic and stomatal dynamics to optimize the balance between carbon gain and water use efficiency under field environments. Finally, we discuss future challenges in improving dynamic photosynthesis by utilizing natural genetic variation. The forward genetic approach supported by high-throughput phenotyping should be introduced to evaluate the effects of genetic and environmental factors and their interactions on the natural variation in dynamic photosynthesis.


Assuntos
Produtos Agrícolas , Fotossíntese , Carbono , Dióxido de Carbono , Produtos Agrícolas/genética , Variação Genética , Fotossíntese/genética , Folhas de Planta
11.
Funct Plant Biol ; 49(6): 496-504, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090541

RESUMO

Photosynthesis occurs mainly in plant leaves and is a fundamental process in the global carbon cycle and in crop production. The exploitation of natural genetic variation in leaf photosynthetic capacity is a promising strategy to meet the increasing demand for crops. The present study reports the newly developed photosynthesis measurement system 'MIC-100,' with a higher throughput for measuring instantaneous photosynthetic rate in the field. MIC-100 is established based on the closed system and directly detects the CO2 absorption in the leaf chamber. The reproducibility, accuracy, and measurement throughput of MIC-100 were tested using soybean (Glycine max L. (Merr.)) and rice (Oryza sativa L.) grown under field conditions. In most cases, the coefficient of variance (CV) for repeated-measurements of the same leaf was less than 0.1. The photosynthetic rates measured with the MIC-100 model showed a significant correlation (R2 = 0.93-0.95) with rates measured by a widely used gas-exchange system. The measurement throughput of the MIC-100 is significantly greater than that of conventional open gas-exchange systems under field conditions. Although MIC-100 solely detects the instantaneous photosynthetic rate under a given environment, this study demonstrated that the MIC-100 enables the rough evaluation of leaf photosynthesis within the large-scale plant populations grown in the field.


Assuntos
Oryza , Fotossíntese , Folhas de Planta , Reprodutibilidade dos Testes , Glycine max/genética
12.
Auton Neurosci ; 237: 102910, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801829

RESUMO

Progressive encephalomyelitis with rigidity and myoclonus (PERM) is a severe form of stiff-person spectrum disorder. We report a 59-year-old man who presented with progressive encephalomyelitis causing diplopia, bulbar palsy, severe dysautonomia, followed by stiffness and myoclonic cluster. Laboratory tests showed mild pleocytosis, with markedly elevated plasma levels of norepinephrine, epinephrine, and arginine vasopressin. Glycine-receptor antibodies were identified in both serum and CSF. Despite a poor response to methylprednisolone, immunoglobulins, and plasma exchange, α-blocker stabilized dysautonomia. Dysautonomia is presumed to be due to antibody-mediated disinhibited sympathetic hyperactivity; however, this case suggests that concomitant use of α-blocker with immunotherapy may ameliorate dysautonomia.


Assuntos
Encefalomielite , Mioclonia , Disautonomias Primárias , Encefalomielite/complicações , Encefalomielite/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Rigidez Muscular , Mioclonia/tratamento farmacológico , Receptores de Glicina
13.
Sci Rep ; 11(1): 15780, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349177

RESUMO

It is generally believed that rice landraces with long culms are susceptible to lodging, and have not been utilized for breeding to improve lodging resistance. However, little is known about the structural culm strength of landraces and their beneficial genetic loci. Therefore, in this study, genome-wide association studies (GWAS) were performed using a rice population panel including Japanese rice landraces to identify beneficial loci associated with strong culms. As a result, the landraces were found to have higher structural culm strength and greater diversity than the breeding varieties. Genetic loci associated with strong culms were identified, and it was demonstrated that haplotypes with positive effects of those loci were present in a high proportion of these landraces. These results indicated that the utilization of the strong culm-associated loci present in Japanese rice landraces may further improve the lodging resistance of modern breeding varieties that have relied on semi-dwarfism.

14.
Plant Cell Physiol ; 62(9): 1436-1445, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34131748

RESUMO

How genetic variations affect gene expression dynamics of field-grown plants remains unclear. Expression quantitative trait loci (eQTL) analysis is frequently used to find genomic regions underlying gene expression polymorphisms. This approach requires transcriptome data for the complete set of the QTL mapping population under the given conditions. Therefore, only a limited range of environmental conditions is covered by a conventional eQTL analysis. We sampled sparse time series of field-grown rice from chromosome segment substitution lines (CSSLs) and conducted RNA sequencing (RNA-Seq). Then, by using statistical analysis integrating meteorological data and the RNA-Seq data, we identified 1,675 eQTLs leading to polymorphisms in expression dynamics under field conditions. A genomic region on chromosome 11 influences the expression of several defense-related genes in a time-of-day- and scaled-age-dependent manner. This includes the eQTLs that possibly influence the time-of-day- and scaled-age-dependent differences in the innate immunity between Koshihikari and Takanari. Based on the eQTL and meteorological data, we successfully predicted gene expression under environments different from training environments and in rice cultivars with more complex genotypes than the CSSLs. Our novel approach of eQTL identification facilitated the understanding of the genetic architecture of expression dynamics under field conditions, which is difficult to assess by conventional eQTL studies. The prediction of expression based on eQTLs and environmental information could contribute to the understanding of plant traits under diverse field conditions.


Assuntos
Genoma de Planta , Oryza/genética , Transcriptoma , Genômica , Oryza/metabolismo
15.
Sci Rep ; 11(1): 7579, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828128

RESUMO

Leaf photosynthetic rate changes across the growing season as crop plants age. Most studies of leaf photosynthesis focus on a specific growth stage, leaving the question of which pattern of photosynthetic dynamics maximizes crop productivity unanswered. Here we obtained high-frequency data of canopy leaf CO2 assimilation rate (A) of two elite rice (Oryza sativa) cultivars and 76 inbred lines across the whole growing season. The integrated A value after heading was positively associated with crop growth rate (CGR) from heading to harvest, but that before heading was not. A curve-smoothing analysis of A after heading showed that accumulated A at > 80% of its maximum (A80) was positively correlated with CGR in analyses of all lines mixed and of lines grouped by genetic background, while the maximum A and accumulated A at ≤ 80% were less strongly correlated with CGR. We also found a genomic region (~ 12.2 Mb) that may enhance both A80 and aboveground biomass at harvest. We propose that maintaining a high A after heading, rather than having high maximum A, is a potential target for enhancing rice biomass accumulation.


Assuntos
Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Biomassa , Produção Agrícola , Genoma de Planta , Oryza/genética , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Estações do Ano , Especificidade da Espécie
16.
Appl Opt ; 60(4): 864-874, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33690402

RESUMO

Controlling stray light at millimeter wavelengths requires special optical design and selection of absorptive materials that should be compatible with cryogenic operating environments. While a wide selection of absorptive materials exists, these typically exhibit high indices of refraction and reflect/scatter a significant fraction of light before absorption. For many lower index materials such as commercial microwave absorbers, their applications in cryogenic environments are challenging. In this paper, we present a new tool to control stray light: metamaterial microwave absorber tiles. These tiles comprise an outer metamaterial layer that approximates a lossy gradient index anti-reflection coating. They are fabricated via injection molding commercially available carbon-loaded polyurethane (25% by mass). The injection molding technology enables mass production at low cost. The design of these tiles is presented, along with thermal tests to 1 K. Room temperature optical measurements verify their control of reflectance to less than 1% up to 65∘ angles of incidence, and control of wide angle scattering below 0.01%. The dielectric properties of the bulk carbon-loaded material used in the tiles is also measured at different temperatures, confirming that the material maintains similar dielectric properties down to 3 K.

17.
J Exp Bot ; 72(7): 2570-2583, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33481019

RESUMO

Understanding the limiting factors of grain filling is essential for the further improvement of grain yields in rice (Oryza sativa). The relatively slow grain growth of the high-yielding cultivar 'Momiroman' is not improved by increasing carbon supply, and hence low sink activity (i.e. the metabolic activity of assimilate consumption/storage in sink organs) may be a limiting factor for grain filling. However, there is no metabolic evidence to corroborate this hypothesis, partly because there is no consensus on how to define and quantify sink activity. In this study, we investigated the carbon flow at a metabolite level from photosynthesis in leaves to starch synthesis in grains of three high-yielding cultivars using the stable isotope 13C. We found that a large amount of newly fixed carbon assimilates in Momiroman was stored as hexose instead of being converted to starch. In addition, the activity of ADP-glucose pyrophosphorylase and the expression of AGPS2b, which encodes a subunit of the ADP-glucose pyrophosphorylase enzyme, were both lower in Momiroman than in the other two cultivars in grains in superior positions on panicle branches. Hence, slower starch synthesis from hexose, which is partly explained by the low expression level of AGPS2b, may be the primary metabolic reason for the lower sink activity observed in Momiroman.


Assuntos
Oryza , Amido/biossíntese , Carbono , Hexoses , Oryza/metabolismo , Proteínas de Plantas/metabolismo
18.
Sci Rep ; 10(1): 19855, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199753

RESUMO

Lodging can reduce grain yield and quality in cereal crops including rice (Oryza sativa L.). To achieve both high biomass production and lodging resistance, the breeding of new cultivars with strong culms is a promising strategy. However, little is known about the diversity of culm strength in temperate japonica rice and underlying genetic factors. Here, we report a wide variation of culm strength among 135 temperate japonica cultivars, and some landraces having the strongest culms among these cultivars. The genome-wide association study (GWAS) identified 55 quantitative trait loci for culm strength and morphological traits, and revealed several candidate genes. The superior allele of candidate gene for culm thickness, OsRLCK191, was found in many landraces but had not inherited to the modern improved cultivars. Our results suggest that landraces of temperate japonica rice have unutilized superior alleles for contributing future improvements of culm strength and lodging resistance.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Oryza/crescimento & desenvolvimento , Locos de Características Quantitativas , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Genoma de Planta , Hibridização Genética , Oryza/genética , Fenótipo , Melhoramento Vegetal , Estresse Fisiológico , Sequenciamento Completo do Genoma
19.
Front Plant Sci ; 11: 578739, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224166

RESUMO

C4 photosynthesis evolved over 65 times, with around 24 origins in the eudicot order Caryophyllales. In the Caryophyllales family Nyctaginaceae, the C4 pathway is known in three genera of the tribe Nyctagineae: Allionia, Okenia and Boerhavia. Phylogenetically, Allionia and Boerhavia/Okenia are separated by three genera whose photosynthetic pathway is uncertain. To clarify the distribution of photosynthetic pathways in the Nyctaginaceae, we surveyed carbon isotope ratios of 159 species of the Nyctaginaceae, along with bundle sheath (BS) cell ultrastructure, leaf gas exchange, and C4 pathway biochemistry in five species from the two C4 clades and closely related C3 genera. All species in Allionia, Okenia and Boerhavia are C4, while no C4 species occur in any other genera of the family, including three that branch between Allionia and Boerhavia. This demonstrates that C4 photosynthesis evolved twice in Nyctaginaceae. Boerhavia species use the NADP-malic enzyme (NADP-ME) subtype of C4 photosynthesis, while Allionia species use the NAD-malic enzyme (NAD-ME) subtype. The BS cells of Allionia have many more mitochondria than the BS of Boerhavia. Bundle sheath mitochondria are closely associated with chloroplasts in Allionia which facilitates CO2 refixation following decarboxylation by mitochondrial NAD-ME. The close relationship between Allionia and Boerhavia could provide insights into why NADP-ME versus NAD-ME subtypes evolve, particularly when coupled to analysis of their respective genomes. As such, the group is an excellent system to dissect the organizational hierarchy of convergent versus divergent traits produced by C4 evolution, enabling us to understand when convergence is favored versus when divergent modifications can result in a common phenotype.

20.
Front Plant Sci ; 11: 1308, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983198

RESUMO

Plants in the field experience dynamic changes of sunlight rather than steady-state irradiation. Therefore, increasing the photosynthetic rate of an individual leaf under fluctuating light is essential for improving crop productivity. The high-yielding indica rice (Oryza sativa L.) cultivar Takanari is considered a potential donor of photosynthesis genes because of its higher steady-state photosynthesis at both atmospheric and elevated CO2 concentrations than those of several Japanese commercial cultivars, including Koshihikari. Photosynthetic induction after a sudden increase in light intensity is faster in Takanari than in Koshihikari, but whether the daily carbon gain of Takanari outperforms that of Koshihikari under fluctuating light in the field is unclear. Here we report that Takanari has higher non-steady-state photosynthesis, especially under low nitrogen (N) supply, than Koshihikari. In a pot experiment, Takanari had greater leaf carbon gain during the initial 10 min after a sudden increase in irradiation and higher daily CO2 assimilation under simulated natural fluctuating light, at both atmospheric (400 ppm) and elevated (800 ppm) CO2 concentrations. The electron transport rate during a day under field conditions with low N supply was also higher in Takanari than in Koshihikari. Although the advantages of Takanari were diminished under high N supply, photosynthetic N use efficiency was consistently higher in Takanari than in Koshihikari, under both low and high N supply. This study demonstrates that Takanari is a promising donor parent to use in breeding programs aimed at increasing CO2 assimilation in a wide range of environments, including future higher CO2 concentrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...