Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; 17(2): e20454, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38715204

RESUMO

For nearly two decades, genomic prediction and selection have supported efforts to increase genetic gains in plant and animal improvement programs. However, novel phenomic strategies for predicting complex traits in maize have recently proven beneficial when integrated into across-environment sparse genomic prediction models. One phenomic data modality is whole grain near-infrared spectroscopy (NIRS), which records reflectance values of biological samples (e.g., maize kernels) based on chemical composition. Predictions of hybrid maize grain yield (GY) and 500-kernel weight (KW) across 2 years (2011-2012) and two management conditions (water-stressed and well-watered) were conducted using combinations of reflectance data obtained from high-throughput, F2 whole-kernel scans and genomic data obtained from genotyping-by-sequencing within four different cross-validation (CV) schemes (CV2, CV1, CV0, and CV00). When predicting the performance of untested genotypes in characterized (CV1) environments, genomic data were better than phenomic data for GY (0.689 ± 0.024-genomic vs. 0.612 ± 0.045-phenomic), but phenomic data were better than genomic data for KW (0.535 ± 0.034-genomic vs. 0.617 ± 0.145-phenomic). Multi-kernel models (combinations of phenomic and genomic relationship matrices) did not surpass single-kernel models for GY prediction in CV1 or CV00 (prediction of untested genotypes in uncharacterized environments); however, these models did outperform the single-kernel models for prediction of KW in these same CVs. Lasso regression applied to the NIRS data set selected a subset of 216 NIRS bands that achieved comparable prediction abilities to the full phenomic data set of 3112 bands predicting GY and KW under CV1 and CV00.


Assuntos
Fenômica , Espectroscopia de Luz Próxima ao Infravermelho , Zea mays , Zea mays/genética , Fenômica/métodos , Genômica/métodos , Fenótipo , Genótipo , Meio Ambiente , Genoma de Planta
2.
G3 (Bethesda) ; 14(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38776257

RESUMO

Field-based phenomic prediction employs novel features, like vegetation indices (VIs) from drone images, to predict key agronomic traits in maize, despite challenges in matching biomarker measurement time points across years or environments. This study utilized functional principal component analysis (FPCA) to summarize the variation of temporal VIs, uniquely allowing the integration of this data into phenomic prediction models tested across multiple years (2018-2021) and environments. The models, which included 1 genomic, 2 phenomic, 2 multikernel, and 1 multitrait type, were evaluated in 4 prediction scenarios (CV2, CV1, CV0, and CV00), relevant for plant breeding programs, assessing both tested and untested genotypes in observed and unobserved environments. Two hybrid populations (415 and 220 hybrids) demonstrated the visible atmospherically resistant index's strong temporal correlation with grain yield (up to 0.59) and plant height. The first 2 FPCAs explained 59.3 ± 13.9% and 74.2 ± 9.0% of the temporal variation of temporal data of VIs, respectively, facilitating predictions where flight times varied. Phenomic data, particularly when combined with genomic data, often were comparable to or numerically exceeded the base genomic model in prediction accuracy, particularly for grain yield in untested hybrids, although no significant differences in these models' performance were consistently observed. Overall, this approach underscores the effectiveness of FPCA and combined models in enhancing the prediction of grain yield and plant height across environments and diverse agricultural settings.


Assuntos
Genômica , Fenômica , Fenótipo , Zea mays , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Fenômica/métodos , Genômica/métodos , Grão Comestível/genética , Genótipo , Característica Quantitativa Herdável , Melhoramento Vegetal/métodos , Genoma de Planta , Análise de Componente Principal
3.
New Phytol ; 242(1): 121-136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38348523

RESUMO

Quantifying the temporal or longitudinal growth dynamics of crops in diverse environmental conditions is crucial for understanding plant development, requiring further modeling techniques. In this study, we analyzed the growth patterns of two different maize (Zea mays L.) populations using high-throughput phenotyping with a maize population consisting of 515 recombinant inbred lines (RILs) grown in Texas and a hybrid population containing 1090 hybrids grown in Missouri. Two models, Gaussian peak and functional principal component analysis (FPCA), were employed to study the Normalized Green-Red Difference Index (NGRDI) scores. The Gaussian peak model showed strong correlations (c. 0.94 for RILs and c. 0.97 for hybrids) between modeled and non-modeled temporal trajectories. Functional principal component analysis differentiated NGRDI trajectories in RILs under different conditions, capturing substantial variability (75%, 20%, and 5% for RILs; 88% and 12% for hybrids). By comparing these models with conventional BLUP values, common quantitative trait loci (QTLs) were identified, containing candidate genes of brd1, pin11, zcn8 and rap2. The harmony between these loci's additive effects and growing degree days, as well as the differentiation of RIL haplotypes across growth stages, underscores the significant interplay of these loci in driving plant development. These findings contribute to advancing understanding of plant-environment interactions and have implications for crop improvement strategies.


Assuntos
Locos de Características Quantitativas , Zea mays , Zea mays/genética , Locos de Características Quantitativas/genética , Fenótipo , Haplótipos , Genômica
4.
Theor Appl Genet ; 136(7): 155, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37329482

RESUMO

KEY MESSAGE: A novel locus was discovered on chromosome 7 associated with a lesion mimic in maize; this lesion mimic had a quantitative and heritable phenotype and was predicted better via subset genomic markers than whole genome markers across diverse environments. Lesion mimics are a phenotype of leaf micro-spotting in maize (Zea mays L.), which can be early signs of biotic or abiotic stresses. Dissecting its inheritance is helpful to understand how these loci behave across different genetic backgrounds. Here, 538 maize recombinant inbred lines (RILs) segregating for a novel lesion mimic were quantitatively phenotyped in Georgia, Texas, and Wisconsin. These RILs were derived from three bi-parental crosses using a tropical pollinator (Tx773) as the common parent crossed with three inbreds (LH195, LH82, and PB80). While this lesion mimic was heritable across three environments based on phenotypic ([Formula: see text] = 0.68) and genomic ([Formula: see text] = 0.91) data, transgressive segregation was observed. A genome-wide association study identified a single novel locus on chromosome 7 (at 70.6 Mb) also covered by a quantitative trait locus interval (69.3-71.0 Mb), explaining 11-15% of the variation, depending on the environment. One candidate gene identified in this region, Zm00001eb308070, is related to the abscisic acid pathway involving in cell death. Genomic predictions were applied to genome-wide markers (39,611 markers) contrasted with a marker subset (51 markers). Population structure explained more variation than environment in genomic prediction, but other substantial genetic background effects were additionally detected. Subset markers explained substantially less genetic variation (24.9%) for the lesion mimic than whole genome markers (55.4%) in the model, yet predicted the lesion mimic better (0.56-0.66 vs. 0.26-0.29). These results indicate this lesion mimic phenotype was less affected by environment than by epistasis and genetic background effects, which explain its transgressive segregation.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Zea mays/genética , Epistasia Genética , Mapeamento Cromossômico , Fenótipo , Patrimônio Genético , Polimorfismo de Nucleotídeo Único
5.
J Exp Bot ; 74(17): 5307-5326, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37279568

RESUMO

High-throughput phenotyping (HTP) has expanded the dimensionality of data in plant research; however, HTP has resulted in few novel biological discoveries to date. Field-based HTP (FHTP), using small unoccupied aerial vehicles (UAVs) equipped with imaging sensors, can be deployed routinely to monitor segregating plant population interactions with the environment under biologically meaningful conditions. Here, flowering dates and plant height, important phenological fitness traits, were collected on 520 segregating maize recombinant inbred lines (RILs) in both irrigated and drought stress trials in 2018. Using UAV phenomic, single nucleotide polymorphism (SNP) genomic, as well as combined data, flowering times were predicted using several scenarios. Untested genotypes were predicted with 0.58, 0.59, and 0.41 prediction ability for anthesis, silking, and terminal plant height, respectively, using genomic data, but prediction ability increased to 0.77, 0.76, and 0.58 when phenomic and genomic data were used together. Using the phenomic data in a genome-wide association study, a heat-related candidate gene (GRMZM2G083810; hsp18f) was discovered using temporal reflectance phenotypes belonging to flowering times (both irrigated and drought) trials where heat stress also peaked. Thus, a relationship between plants and abiotic stresses belonging to a specific time of growth was revealed only through use of temporal phenomic data. Overall, this study showed that (i) it is possible to predict complex traits using high dimensional phenomic data between different environments, and (ii) temporal phenomic data can reveal a time-dependent association between genotypes and abiotic stresses, which can help understand mechanisms to develop resilient plants.


Assuntos
Fenômica , Zea mays , Zea mays/genética , Estudo de Associação Genômica Ampla , Fenótipo , Genômica/métodos
6.
PLoS One ; 18(1): e0277804, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36701283

RESUMO

Unoccupied aerial systems (UAS) based high throughput phenotyping studies require further investigation to combine different environments and planting times into one model. Here 100 elite breeding hybrids of maize (Zea mays L.) were evaluated in two environment trials-one with optimal planting and irrigation (IHOT), and one dryland with delayed planting (DHOT). RGB (Red-Green-Blue) based canopy height measurement (CHM) and vegetation indices (VIs) were estimated from a UAS platform. Time series and cumulative VIs, by both summation (ΣVI-SUMs) and area under the curve (ΣVI-AUCs), were fit via machine learning regression modeling (random forest, linear, ridge, lasso, elastic net regressions) to estimate grain yield. VIs were more valuable predictors of yield to combine different environments than CHM. Time series VIs and CHM produced high accuracies (~68-72%), but inconsistent models. A little sacrifice in accuracy (~60-65%) produced consistent models using ΣVI-SUMs and CHM during pre-reproductive vegetative growth. Absence of VIs produced poorer accuracies (by about ~5-10%). Normalized difference type VIs produced maximum accuracies, and flowering times were the best times for UAS data acquisition. This study suggests that the best yielding varieties can be accurately predicted in new environments at or before flowering when combining multiple temporal flights and predictors.


Assuntos
Melhoramento Vegetal , Zea mays , Zea mays/genética , Grão Comestível
7.
G3 (Bethesda) ; 13(1)2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36445027

RESUMO

A major challenge of genetic improvement and selection is to accurately predict individuals with the highest fitness in a population without direct measurement. Over the last decade, genomic predictions (GP) based on genome-wide markers have become reliable and routine. Now phenotyping technologies, including unoccupied aerial systems (UAS also known as drones), can characterize individuals with a data depth comparable to genomics when used throughout growth. This study, for the first time, demonstrated that the prediction power of temporal UAS phenomic data can achieve or exceed that of genomic data. UAS data containing red-green-blue (RGB) bands over 15 growth time points and multispectral (RGB, red-edge and near infrared) bands over 12 time points were compared across 280 unique maize hybrids. Through cross-validation of untested genotypes in tested environments (CV2), temporal phenomic prediction (TPP), outperformed GP (0.80 vs 0.71); TPP and GP performed similarly in 3 other cross-validation scenarios. Genome-wide association mapping using area under temporal curves of vegetation indices (VIs) revealed 24.5% of a total of 241 discovered loci (59 loci) had associations with multiple VIs, explaining up to 51% of grain yield variation, less than GP and TPP predicted. This suggests TPP, like GP, integrates small effect loci well improving plant fitness predictions. More importantly, TPP appeared to work successfully on unrelated individuals unlike GP.


Assuntos
Estudo de Associação Genômica Ampla , Fenômica , Humanos , Fenótipo , Genótipo , Genômica
8.
Sci Rep ; 12(1): 7571, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534655

RESUMO

Current methods in measuring maize (Zea mays L.) southern rust (Puccinia polyspora Underw.) and subsequent crop senescence require expert observation and are resource-intensive and prone to subjectivity. In this study, unoccupied aerial system (UAS) field-based high-throughput phenotyping (HTP) was employed to collect high-resolution aerial imagery of elite maize hybrids planted in the 2020 and 2021 growing seasons, with 13 UAS flights obtained from 2020 and 17 from 2021. In total, 36 vegetation indices (VIs) were extracted from mosaicked aerial images that served as temporal phenomic predictors for southern rust scored in the field and senescence as scored using UAS-acquired mosaic images. Temporal best linear unbiased predictors (TBLUPs) were calculated using a nested model that treated hybrid performance as nested within flights in terms of rust and senescence. All eight machine learning regressions tested (ridge, lasso, elastic net, random forest, support vector machine with radial and linear kernels, partial least squares, and k-nearest neighbors) outperformed a general linear model with both higher prediction accuracies (92-98%) and lower root mean squared error (RMSE) for rust and senescence scores (linear model RMSE ranged from 65.8 to 2396.5 across all traits, machine learning regressions RMSE ranged from 0.3 to 17.0). UAS-acquired VIs enabled the discovery of novel early quantitative phenotypic indicators of maize senescence and southern rust before being detectable by expert annotation and revealed positive correlations between grain filling time and yield (0.22 and 0.44 in 2020 and 2021), with practical implications for precision agricultural practices.


Assuntos
Basidiomycota , Zea mays , Algoritmos , Aprendizado de Máquina , Fenômica , Zea mays/genética
9.
Plant Genome ; 14(2): e20102, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34009740

RESUMO

Traditional phenotyping methods, coupled with genetic mapping in segregating populations, have identified loci governing complex traits in many crops. Unoccupied aerial systems (UAS)-based phenotyping has helped to reveal a more novel and dynamic relationship between time-specific associated loci with complex traits previously unable to be evaluated. Over 1,500 maize (Zea mays L.) hybrid row plots containing 280 different replicated maize hybrids from the Genomes to Fields (G2F) project were evaluated agronomically and using UAS in 2017. Weekly UAS flights captured variation in plant heights during the growing season under three different management conditions each year: optimal planting with irrigation (G2FI), optimal dryland planting without irrigation (G2FD), and a stressed late planting (G2LA). Plant height of different flights were ranked based on importance for yield using a random forest (RF) algorithm. Plant heights captured by early flights in G2FI trials had higher importance (based on Gini scores) for predicting maize grain yield (GY) but also higher accuracies in genomic predictions which fluctuated for G2FD (-0.06∼0.73), G2FI (0.33∼0.76), and G2LA (0.26∼0.78) trials. A genome-wide association analysis discovered 52 significant single nucleotide polymorphisms (SNPs), seven were found consistently in more than one flights or trial; 45 were flight or trial specific. Total cumulative marker effects for each chromosome's contributions to plant height also changed depending on flight. Using UAS phenotyping, this study showed that many candidate genes putatively play a role in the regulation of plant architecture even in relatively early stages of maize growth and development.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Mapeamento Cromossômico , Fenótipo , Polimorfismo de Nucleotídeo Único , Zea mays/genética
10.
G3 (Bethesda) ; 11(6)2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33822935

RESUMO

Plant height (PHT) in maize (Zea mays L.) has been scrutinized genetically and phenotypically due to relationship with other agronomically valuable traits (e.g., yield). Heritable variation of PHT is determined by many discovered quantitative trait loci; however, phenotypic effects of such loci often lack validation across environments and genetic backgrounds, especially in the hybrid state grown by farmers rather than the inbred state more often used by geneticists. A previous genome-wide association study using a topcrossed hybrid diversity panel identified two novel quantitative trait variants controlling both PHT and grain yield. Here, heterogeneous inbred families demonstrated that these two loci, characterized by two single nucleotide polymorphisms (SNPs), cause phenotypic variation in inbred lines, but that size of these effects were variable across four different genetic backgrounds, ranging from 1 to 10 cm. Weekly unoccupied aerial system flights demonstrated the two SNPs had larger effects, varying from 10 to 25 cm, in early growth while effects decreased toward the end of the season. These results show that allelic effect sizes of economically valuable loci are both dynamic in temporal growth and dynamic across genetic backgrounds, resulting in informative phenotypic variability overlooked following traditional phenotyping methods. Public genotyping data show recent favorable allele selection in elite temperate germplasm with little change across tropical backgrounds. As these loci remain rarer in tropical germplasm, with effects most visible early in growth, they are useful for breeding and selection to expand the genetic basis of maize.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Zea mays/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Fenótipo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...