Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 10(7): 3362-3368, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29388658

RESUMO

Break-junction measurements are typically aimed at characterizing electronic properties of single molecules bound between two metal electrodes. Although these measurements have provided structure-function relationships for such devices, there is little work that studies the impact of molecule-molecule interactions on junction characteristics. Here, we use a scanning tunneling microscope based break-junction technique to study pi-stacked dimer junctions formed with two amine-terminated conjugated molecules. We show that the conductance, force and flicker noise of such dimers differ dramatically when compared with the corresponding monomer junctions and discuss the implications of these results on intra- and inter-molecular charge transport.

2.
Nano Lett ; 17(2): 1255-1261, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28112947

RESUMO

We investigate light-induced conductance enhancement in single-molecule junctions via photon-assisted transport and hot-electron transport. Using 4,4'-bipyridine bound to Au electrodes as a prototypical single-molecule junction, we report a 20-40% enhancement in conductance under illumination with 980 nm wavelength radiation. We probe the effects of subtle changes in the transmission function on light-enhanced current and show that discrete variations in the binding geometry result in a 10% change in enhancement. Importantly, we prove theoretically that the steady-state behavior of photon-assisted transport and hot-electron transport is identical but that hot-electron transport is the dominant mechanism for optically induced conductance enhancement in single-molecule junctions when the wavelength used is absorbed by the electrodes and the hot-electron relaxation time is long. We confirm this experimentally by performing polarization-dependent conductance measurements of illuminated 4,4'-bipyridine junctions. Finally, we perform lock-in type measurements of optical current and conclude that currents due to laser-induced thermal expansion mask optical currents. This work provides a robust experimental framework for studying mechanisms of light-enhanced transport in single-molecule junctions and offers tools for tuning the performance of organic optoelectronic devices by analyzing detailed transport properties of the molecules involved.


Assuntos
Elétrons , Piridinas/química , Condutividade Elétrica , Eletrodos , Transporte de Elétrons , Ouro/química , Iluminação , Modelos Teóricos , Fótons , Propriedades de Superfície , Temperatura
3.
Nano Lett ; 15(12): 8316-21, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26574713

RESUMO

We investigate bidirectional femtosecond charge transfer dynamics using the core-hole clock implementation of resonant photoemission spectroscopy from 4,4'-bipyridine molecular layers on three different surfaces: Au(111), epitaxial graphene on Ni(111), and graphene nanoribbons. We show that the lowest unoccupied molecular orbital (LUMO) of the molecule drops partially below the Fermi level upon core-hole creation in all systems, opening an additional decay channel for the core-hole, involving electron donation from substrate to the molecule. Furthermore, using the core-hole clock method, we find that the bidirectional charge transfer time between the substrate and the molecule is fastest on Au(111), with a 2 fs time, then around 4 fs for epitaxial graphene and slowest with graphene nanoribbon surface, taking around 10 fs. Finally, we provide evidence for fast phase decoherence of the core-excited LUMO* electron through an interaction with the substrate providing the first observation of such a fast bidirectional charge transfer across an organic/graphene interface.

4.
Nano Lett ; 15(6): 4143-9, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25942441

RESUMO

Charge transport properties of metal-molecule interfaces depend strongly on the character of molecule-electrode interactions. Although through-bond coupled systems have attracted the most attention, through-space coupling is important in molecular systems when, for example, through-bond coupling is suppressed due to quantum interference effects. To date, a probe that clearly distinguishes these two types of coupling has not yet been demonstrated. Here, we investigate the origin of flicker noise in single molecule junctions and demonstrate how the character of the molecule-electrode coupling influences the flicker noise behavior of single molecule junctions. Importantly, we find that flicker noise shows a power law dependence on conductance in all junctions studied with an exponent that can distinguish through-space and through-bond coupling. Our results provide a new and powerful tool for probing and understanding coupling at the metal-molecule interface.

5.
Nat Nanotechnol ; 10(6): 522-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26005998

RESUMO

Molecular electronics aims to miniaturize electronic devices by using subnanometre-scale active components. A single-molecule diode, a circuit element that directs current flow, was first proposed more than 40 years ago and consisted of an asymmetric molecule comprising a donor-bridge-acceptor architecture to mimic a semiconductor p-n junction. Several single-molecule diodes have since been realized in junctions featuring asymmetric molecular backbones, molecule-electrode linkers or electrode materials. Despite these advances, molecular diodes have had limited potential for applications due to their low conductance, low rectification ratios, extreme sensitivity to the junction structure and high operating voltages. Here, we demonstrate a powerful approach to induce current rectification in symmetric single-molecule junctions using two electrodes of the same metal, but breaking symmetry by exposing considerably different electrode areas to an ionic solution. This allows us to control the junction's electrostatic environment in an asymmetric fashion by simply changing the bias polarity. With this method, we reliably and reproducibly achieve rectification ratios in excess of 200 at voltages as low as 370 mV using a symmetric oligomer of thiophene-1,1-dioxide. By taking advantage of the changes in the junction environment induced by the presence of an ionic solution, this method provides a general route for tuning nonlinear nanoscale device phenomena, which could potentially be applied in systems beyond single-molecule junctions.


Assuntos
Cristalização/métodos , Nanopartículas/química , Nanopartículas/ultraestrutura , Semicondutores , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Tamanho da Partícula
6.
Nano Lett ; 15(6): 3716-22, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26020454

RESUMO

We study the impact of electrode band structure on transport through single-molecule junctions by measuring the conductance of pyridine-based molecules using Ag and Au electrodes. Our experiments are carried out using the scanning tunneling microscope based break-junction technique and are supported by density functional theory based calculations. We find from both experiments and calculations that the coupling of the dominant transport orbital to the metal is stronger for Au-based junctions when compared with Ag-based junctions. We attribute this difference to relativistic effects, which result in an enhanced density of d-states at the Fermi energy for Au compared with Ag. We further show that the alignment of the conducting orbital relative to the Fermi level does not follow the work function difference between two metals and is different for conjugated and saturated systems. We thus demonstrate that the details of the molecular level alignment and electronic coupling in metal-organic interfaces do not follow simple rules but are rather the consequence of subtle local interactions.

7.
Nano Lett ; 14(9): 5365-70, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25111197

RESUMO

Using scanning tunneling microscope break-junction experiments and a new first-principles approach to conductance calculations, we report and explain low-bias charge transport behavior of four types of metal-porphyrin-gold molecular junctions. A nonequilibrium Green's function approach based on self-energy corrected density functional theory and optimally tuned range-separated hybrid functionals is developed and used to understand experimental trends quantitatively. Importantly, due to the localized d states of the porphyrin molecules, hybrid functionals are essential for explaining measurements; standard semilocal functionals yield qualitatively incorrect results. Comparing directly with experiments, we show that the conductance can change by nearly a factor of 2 when different metal cations are used, counter to trends expected from gas-phase ionization energies which are relatively unchanged with the metal center. Our work explains the sensitivity of the porphyrin conductance with the metal center via a detailed and quantitative portrait of the interface electronic structure and provides a new framework for understanding transport quantitatively in complex junctions involving molecules with localized d states of relevance to light harvesting and energy conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...