Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.794
Filtrar
1.
Biochemistry ; 63(10): 1335-1346, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38690768

RESUMO

Lipoxygenases (LOXs) from pathogenic fungi are potential therapeutic targets for defense against plant and select human diseases. In contrast to the canonical LOXs in plants and animals, fungal LOXs are unique in having appended N-linked glycans. Such important post-translational modifications (PTMs) endow proteins with altered structure, stability, and/or function. In this study, we present the structural and functional outcomes of removing or altering these surface carbohydrates on the LOX from the devastating rice blast fungus, M. oryzae, MoLOX. Alteration of the PTMs did notinfluence the active site enzyme-substrate ground state structures as visualized by electron-nuclear double resonance (ENDOR) spectroscopy. However, removal of the eight N-linked glycans by asparagine-to-glutamine mutagenesis nonetheless led to a change in substrate selectivity and an elevated activation energy for the reaction with substrate linoleic acid, as determined by kinetic measurements. Comparative hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis of wild-type and Asn-to-Gln MoLOX variants revealed a regionally defined impact on the dynamics of the arched helix that covers the active site. Guided by these HDX results, a single glycan sequon knockout was generated at position 72, and its comparative substrate selectivity from kinetics nearly matched that of the Asn-to-Gln variant. The cumulative data from model glyco-enzyme MoLOX showcase how the presence, alteration, or removal of even a single N-linked glycan can influence the structural integrity and dynamics of the protein that are linked to an enzyme's catalytic proficiency, while indicating that extensive glycosylation protects the enzyme during pathogenesis by protecting it from protease degradation.


Assuntos
Lipoxigenase , Glicosilação , Lipoxigenase/metabolismo , Lipoxigenase/química , Lipoxigenase/genética , Especificidade por Substrato , Conformação Proteica , Domínio Catalítico , Processamento de Proteína Pós-Traducional , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Modelos Moleculares , Polissacarídeos/metabolismo , Polissacarídeos/química , Cinética , Ativação Enzimática
2.
Artigo em Inglês | MEDLINE | ID: mdl-38726490

RESUMO

Background: Intramedullary screws (IMS) have become a viable option for metacarpal fracture fixation. To further appraise their utility, this study assessed clinical and patient-reported short- and medium-term outcomes of IMS fixation for extra-articular metacarpal fractures. Methods: A retrospective cohort study was performed in a series of 32 patients (with a total of 37 fractures) who underwent metacarpal fracture fixation over a 42-month period between January 2020 and July 2023. Results: Mean time for return to work was 39.8 days; mean time for return to full function was 88.4 days; total active motion was 250.7° (range: 204.9-270.9); Quick Disabilities of the Arm, Shoulder and Hand score was 2.3 (range: 0-22.7); mean visual analogue pain score was 0.9 out of 10 (range: 0-6) and a single complication was observed. Conclusions: The use of IMS in metacarpal fracture fixation is a practicable surgical option. IMS fixations yields a satisfactory duration for return to function, good postoperative range of movement, modest pain scores and low rates of complications. Level of Evidence: Level IV (Therapeutic).

3.
Cancer Res Commun ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727208

RESUMO

Programmed cell death mechanisms are important for the regulation of tumor development and progression. Evasion of and resistance to apoptosis are significant factors in tumorigenesis and drug resistance. Bypassing apoptotic pathways and eliciting another form of regulated cell death, namely necroptosis, an immunogenic cell death (ICD), may override apoptotic resistance. Here, we present the mechanistic rationale for combining tolinapant, an antagonist of the inhibitor of apoptosis proteins (IAP), with decitabine, a hypomethylating agent (HMA), in T-cell lymphoma (TCL). Tolinapant treatment alone of TCL cells in vitro and in syngeneic in vivo models demonstrated that ICD markers can be upregulated, and we have shown that epigenetic priming with decitabine further enhances this effect. The clinical relevance of ICD markers was confirmed by the direct measurement of plasma proteins from peripheral TCL patients treated with tolinapant. We showed increased levels of necroptosis in TCL lines, along with the expression of cancer-specific antigens (such as cancer testis antigens) and increases in genes involved in interferon signaling induced by HMA treatment, together deliver a strong adaptive immune response to the tumor. These results highlight the potential of a decitabine and tolinapant combination for TCL and could lead to clinical evaluation.

5.
J Ovarian Res ; 17(1): 94, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704607

RESUMO

BACKGROUND: Genetic studies implicate the oncogenic transcription factor Forkhead Box M1 (FOXM1) as a potential therapeutic target in high-grade serous ovarian cancer (HGSOC). We evaluated the activity of different FOXM1 inhibitors in HGSOC cell models. RESULTS: We treated HGSOC and fallopian tube epithelial (FTE) cells with a panel of previously reported FOXM1 inhibitors. Based on drug potency, efficacy, and selectivity, determined through cell viability assays, we focused on two compounds, NB-73 and NB-115 (NB compounds), for further investigation. NB compounds potently and selectively inhibited FOXM1 with lesser effects on other FOX family members. NB compounds decreased FOXM1 expression via targeting the FOXM1 protein by promoting its proteasome-mediated degradation, and effectively suppressed FOXM1 gene targets at both the protein and mRNA level. At the cellular level, NB compounds promoted apoptotic cell death. Importantly, while inhibition of apoptosis using a pan-caspase inhibitor rescued HGSOC cells from NB compound-induced cell death, it did not rescue FOXM1 protein degradation, supporting that FOXM1 protein loss from NB compound treatment is specific and not a general consequence of cytotoxicity. Drug washout studies indicated that FOXM1 reduction was retained for at least 72 h post-treatment, suggesting that NB compounds exhibit long-lasting effects in HGSOC cells. NB compounds effectively suppressed both two-dimensional and three-dimensional HGSOC cell colony formation at sub-micromolar concentrations. Finally, NB compounds exhibited synergistic activity with carboplatin in HGSOC cells. CONCLUSIONS: NB compounds are potent, selective, and efficacious inhibitors of FOXM1 in HGSOC cells and are worthy of further investigation as HGSOC therapeutics.


Assuntos
Antineoplásicos , Apoptose , Proteína Forkhead Box M1 , Neoplasias Ovarianas , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/antagonistas & inibidores , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/patologia , Cistadenocarcinoma Seroso/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Gradação de Tumores
6.
Nanoscale ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38779821

RESUMO

Catalytic activity is affected by surface morphology, and specific surfaces display greater activity than others. A key challenge is to define synthetic strategies to enhance the expression of more active surfaces and to maintain their stability during the lifespan of the catalyst. In this work, we outline an ab initio approach, based on density functional theory, to predict surface composition and particle morphology as a function of environmental conditions, and we apply this to CeO2 nanoparticles in the presence of co-adsorbed H2O and CO2 as an industrially relevant test case. We find that dissociative adsorption of both molecules is generally the most favourable, and that the presence of H2O can stabilise co-adsorbed CO2. We show that changes in adsorption strength with temperature and adsorbate partial pressure lead to significant changes in surface stability, and in particular that co-adsorption of H2O and CO2 stabilizes the {100} and {110} surfaces over the {111} surface. Based on the changes in surface free energy induced by the adsorbed species, we predict that cuboidal nanoparticles are favoured in the presence of co-adsorbed H2O and CO2, suggesting that cuboidal particles should experience a lower thermodynamic driving force to reconstruct and thus be more stable as catalysts for processes involving these species.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38741938

RESUMO

Fragile X Syndrome (FXS) is the most prevalent monogenetic form of intellectual disability and autism. Recently, dysregulation of insulin signaling (IS) and aberrations in mitochondrial function have emerged as robust, evolutionarily conserved components of FXS pathophysiology. However, the mechanisms by which altered IS and mitochondrial dysfunction impact behavior in the context of FXS remain elusive. Here, we show that normalization of IS improves mitochondrial volume and function in flies that lack expression of dfmr1, the Drosophila homolog of the causal gene of FXS in humans. Further, we demonstrate that dysregulation of IS underlies diminished expression of the mitochondrial master regulator PGC-1α/Spargel in dfmr1 mutant flies. These results are behaviorally relevant, as we show that pan-neuronal augmentation of PGC-1α/Spargel improves circadian behavior in dfmr1 mutants. Notably, we also show that modulation of PGC-1α/Spargel expression in wild-type flies phenocopies the dfmr1 mutant circadian defect. Taken together, the results presented herein provide a mechanistic link between mitochondrial function and circadian behavior both in FXS pathogenesis as well as more broadly at the interface between metabolism and behavioral output.

8.
PLoS Comput Biol ; 20(5): e1012082, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701077

RESUMO

Many self-motivated and goal-directed behaviours display highly flexible, approximately 4 hour ultradian (shorter than a day) oscillations. Despite lacking direct correspondence to physical cycles in the environment, these ultradian rhythms may be involved in optimizing functional interactions with the environment and reflect intrinsic neural dynamics. Current evidence supports a role of mesostriatal dopamine (DA) in the expression and propagation of ultradian rhythmicity, however, the biochemical processes underpinning these oscillations remain to be identified. Here, we use a mathematical model to investigate D2 autoreceptor-dependent DA self-regulation as the source of ultradian behavioural rhythms. DA concentration at the midbrain-striatal synapses is governed through a dual-negative feedback-loop structure, which naturally gives rise to rhythmicity. This model shows the propensity of striatal DA to produce an ultradian oscillation characterized by a flexible period that is highly sensitive to parameter variations. Circadian (approximately 24 hour) regulation consolidates the ultradian oscillations and alters their response to the phase-dependent, rapid-resetting effect of a transient excitatory stimulus. Within a circadian framework, the ultradian rhythm orchestrates behavioural activity and enhances responsiveness to an external stimulus. This suggests a role for the circadian-ultradian timekeeping hierarchy in governing organized behaviour and shaping daily experience through coordinating the motivation to engage in recurring, albeit not highly predictable events, such as social interactions.


Assuntos
Dopamina , Receptores de Dopamina D2 , Ritmo Ultradiano , Dopamina/metabolismo , Dopamina/fisiologia , Receptores de Dopamina D2/metabolismo , Ritmo Ultradiano/fisiologia , Animais , Modelos Neurológicos , Humanos , Ritmo Circadiano/fisiologia , Corpo Estriado/fisiologia , Corpo Estriado/metabolismo , Biologia Computacional
9.
Environ Sci Technol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38759639

RESUMO

Methane is a major contributor to anthropogenic greenhouse gas emissions. Identifying large sources of methane, particularly from the oil and gas sectors, will be essential for mitigating climate change. Aircraft-based methane sensing platforms can rapidly detect and quantify methane point-source emissions across large geographic regions, and play an increasingly important role in industrial methane management and greenhouse gas inventory. We independently evaluate the performance of five major methane-sensing aircraft platforms: Carbon Mapper, GHGSat-AV, Insight M, MethaneAIR, and Scientific Aviation. Over a 6 week period, we released metered gas for over 700 single-blind measurements across all five platforms to evaluate their ability to detect and quantify emissions that range from 1 to over 1,500 kg(CH4)/h. Aircraft consistently quantified releases above 10 kg(CH4)/h, and GHGSat-AV and Insight M detected emissions below 5 kg(CH4)/h. Fully blinded quantification estimates for platforms using downward-facing imaging spectrometers have parity slopes ranging from 0.76 to 1.13, with R2 values of 0.61 to 0.93; the platform using continuous air sampling has a parity slope of 0.5 (R2 = 0.93). Results demonstrate that aircraft-based methane sensing has matured since previous studies and is ready for an increasingly important role in environmental policy and regulation.

10.
Psychol Assess ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753374

RESUMO

Comparing self-reported symptom scores across time requires longitudinal measurement invariance (LMI), a psychometric property that means the measure is functioning identically across all time points. Despite its prominence as a measure of depression symptom severity in both research and health care, LMI has yet to be firmly established for the Patient Health Questionnaire-9 depression module (PHQ-9), particularly over the course of antidepressant pharmacotherapy. Accordingly, the objective of this study was to assess for LMI of the PHQ-9 during pharmacotherapy for major depressive disorder. This was a secondary analysis of data collected during a randomized controlled trial. A total of 1,944 veterans began antidepressant monotherapy and completed the PHQ-9 six times over 24 weeks of treatment. LMI was assessed using a series of four confirmatory factor analysis models that included all six time points, with estimated parameters increasingly constrained across models to test for different aspects of invariance. Root-mean-square error of approximation of the chi-square difference test values below 0.06 indicated the presence of LMI. Exploratory LMI analyses were also performed for separate sex, age, and race subgroups. Root-mean-square error of approximation of the chi-square difference test showed minimal change in model fits during invariance testing (≤ 0.06 for all steps), supporting full LMI for the PHQ-9. LMI was also supported for all tested veteran subgroups. As such, PHQ-9 sum scores can be compared across extended pharmacotherapy treatment durations. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

11.
Circ Cardiovasc Interv ; 17(5): e014054, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38696284

RESUMO

BACKGROUND: XC001 is a novel adenoviral-5 vector designed to express multiple isoforms of VEGF (vascular endothelial growth factor) and more safely and potently induce angiogenesis. The EXACT trial (Epicardial Delivery of XC001 Gene Therapy for Refractory Angina Coronary Treatment) assessed the safety and preliminary efficacy of XC001 in patients with no option refractory angina. METHODS: In this single-arm, multicenter, open-label trial, 32 patients with no option refractory angina received a single treatment of XC001 (1×1011 viral particles) via transepicardial delivery. RESULTS: There were no severe adverse events attributed to the study drug. Twenty expected severe adverse events in 13 patients were related to the surgical procedure. Total exercise duration increased from a mean±SD of 359.9±105.55 seconds at baseline to 448.2±168.45 (3 months), 449.2±175.9 (6 months), and 477.6±174.7 (12 months; +88.3 [95% CI, 37.1-139.5], +84.5 [95% CI, 34.1-134.9], and +115.5 [95% CI, 59.1-171.9]). Total myocardial perfusion deficit on positron emission tomography imaging decreased by 10.2% (95% CI, -3.1% to 23.5%), 14.3% (95% CI, 2.8%-25.7%), and 10.2% (95% CI, -0.8% to -21.2%). Angina frequency decreased from a mean±SD 12.2±12.5 episodes to 5.2±7.2 (3 months), 5.1±7.8 (6 months), and 2.7±4.8 (12 months), with an average decrease of 7.7 (95% CI, 4.1-11.3), 6.6 (95% CI, 3.5-9.7), and 8.8 (4.6-13.0) episodes at 3, 6, and 12 months. Angina class improved in 81% of participants at 6 months. CONCLUSIONS: XC001 administered via transepicardial delivery is safe and generally well tolerated. Exploratory improvements in total exercise duration, ischemic burden, and subjective measures support a biologic effect sustained to 12 months, warranting further investigation. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04125732.


Assuntos
Angina Pectoris , Terapia Genética , Vetores Genéticos , Neovascularização Fisiológica , Fator A de Crescimento do Endotélio Vascular , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Angina Pectoris/terapia , Angina Pectoris/fisiopatologia , Terapia Genética/efeitos adversos , Idoso , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/genética , Fatores de Tempo , Tolerância ao Exercício , Adenoviridae/genética , Recuperação de Função Fisiológica
12.
PNAS Nexus ; 3(5): pgae143, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38694146

RESUMO

Travel to academic conferences-where international flights are the norm-is responsible for a sizeable fraction of the greenhouse gas (GHG) emissions associated with academic work. In order to provide a benchmark for comparison with other fields, as well as for future reduction strategies and assessments, we estimate the CO2-equivalent emissions for conference travel in the field of astronomy for the prepandemic year 2019. The GHG emission of the international astronomical community's 362 conferences and schools in 2019 amounted to 42,500 tCO2e, assuming a radiative-forcing index factor of 1.95 for air travel. This equates to an average of 1.0 ± 0.6 tCO2e per participant per meeting. The total travel distance adds up to roughly 1.5 Astronomical Units, that is, 1.5 times the distance between the Earth and the Sun. We present scenarios for the reduction of this value, for instance with virtual conferencing or hub models, while still prioritizing the benefits conferences bring to the scientific community.

13.
J Immunol ; 212(11): 1843-1854, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568091

RESUMO

Intraepithelial lymphocytes (IELs) are T cells important for the maintenance of barrier integrity in the intestine. Colon IELs are significantly reduced in both MyD88-deficient mice and those lacking an intact microbiota, suggesting that MyD88-mediated detection of bacterial products is important for the recruitment and/or retention of these cells. Here, using conditionally deficient MyD88 mice, we show that myeloid cells are the key mediators of TCRαß+ IEL recruitment to the colon. Upon exposure to luminal bacteria, myeloid cells produce sphingosine-1-phosphate (S1P) in a MyD88-dependent fashion. TCRαß+ IEL recruitment may be blocked using the S1P receptor antagonist FTY720, confirming the importance of S1P in the recruitment of TCRαß+ IELs to the colon epithelium. Finally, using the TNFΔARE/+ model of Crohn's-like bowel inflammation, we show that disruption of colon IEL recruitment through myeloid-specific MyD88 deficiency results in reduced pathology. Our results illustrate one mechanism for recruitment of a subset of IELs to the colon.


Assuntos
Colo , Mucosa Intestinal , Linfócitos Intraepiteliais , Lisofosfolipídeos , Camundongos Knockout , Células Mieloides , Fator 88 de Diferenciação Mieloide , Receptores de Antígenos de Linfócitos T alfa-beta , Esfingosina , Animais , Lisofosfolipídeos/metabolismo , Camundongos , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Colo/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Camundongos Endogâmicos C57BL , Cloridrato de Fingolimode/farmacologia , Doença de Crohn/imunologia
15.
Chem Sci ; 15(14): 5133-5142, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38577360

RESUMO

This paper describes the discovery and characterization of a dipeptide sequence, Lys-Phe, that binds to the synthetic receptor cucurbit[8]uril (Q8) in neutral aqueous solution with subnanomolar affinity when located at the N-terminus. The thermodynamic and structural basis for the binding of Q8 to a series of four pentapeptides was characterized by isothermal titration calorimetry, NMR spectroscopy, and X-ray crystallography. Submicromolar binding affinity was observed for the peptides Phe-Lys-Gly-Gly-Tyr (FKGGY, 0.3 µM) and Tyr-Leu-Gly-Gly-Gly (YLGGG, 0.2 µM), whereas the corresponding sequence isomers Lys-Phe-Gly-Gly-Tyr (KFGGY, 0.3 nM) and Leu-Tyr-Gly-Gly-Gly (LYGGG, 1.2 nM) bound to Q8 with 1000-fold and 170-fold increases in affinity, respectively. To our knowledge, these are the highest affinities reported between a synthetic receptor and an unmodified peptide. The high-resolution crystal structures of the Q8·Tyr-Leu-Gly-Gly-Gly and Q8·Leu-Tyr-Gly-Gly-Gly complexes have enabled a detailed analysis of the structural determinants for molecular recognition. The high affinity, sequence-selectivity, minimal size of the target binding site, reversibility in the presence of a competitive guest, compatibility with aqueous media, and low toxicity of Q8 should aid in the development of applications involving low concentrations of target polypeptides.

18.
ACS Catal ; 14(7): 5444-5457, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38601784

RESUMO

The oxidation of polyunsaturated fatty acids by lipoxygenases (LOXs) is initiated by a C-H cleavage step in which the hydrogen atom is transferred quantum mechanically (i.e., via tunneling). In these reactions, protein thermal motions facilitate the conversion of ground-state enzyme-substrate complexes to tunneling-ready configurations and are thus important for transferring energy from the solvent to the active site for the activation of catalysis. In this report, we employed temperature-dependent hydrogen-deuterium exchange mass spectrometry (TDHDX-MS) to identify catalytically linked, thermally activated peptides in a representative animal LOX, human epithelial 15-LOX-2. TDHDX-MS of wild-type 15-LOX-2 was compared to two active site mutations that retain structural stability but have increased activation energies (Ea) of catalysis. The Ea value of one variant, V427L, is implicated to arise from suboptimal substrate positioning by increased active-site side chain rotamer dynamics, as determined by X-ray crystallography and ensemble refinement. The resolved thermal network from the comparative Eas of TDHDX-MS between wild-type and V426A is localized along the front face of the 15-LOX-2 catalytic domain. The network contains a clustering of isoleucine, leucine, and valine side chains within the helical peptides. This thermal network of 15-LOX-2 is different in location, area, and backbone structure compared to a model plant lipoxygenase from soybean that exhibits a low Ea value of catalysis compared to the human ortholog. The presented data provide insights into the divergence of thermally activated protein motions in plant and animal LOXs and their relationships to the enthalpic barriers for facilitating hydrogen tunneling.

19.
Am J Clin Pathol ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597584

RESUMO

OBJECTIVES: Myeloproliferative neoplasm, unclassifiable (MPN-U, revised to MPN, not otherwise specified in the fifth edition of the World Health Organization classification) is a heterogeneous category of primary marrow disorders with clinical, morphologic, and/or molecular features that preclude classification as a more specific MPN subtype due to stage at diagnosis, overlapping features between MPN subtypes, or the presence of coexisting disorders. Compared with other MPN subtypes, the contribution of the mutational landscape in MPN-U in conjunction with other clinical and morphologic biomarkers to prognosis has been less well investigated. METHODS: We performed a multicenter, retrospective study of MPN-U (94 cases) to better define the clinicopathologic features, genetic landscape, and clinical outcomes, including subgroups of early-stage, advanced-stage, and coexisting disorders. The Dynamic International Prognostic Scoring System (DIPSS) plus scoring system was applied to assess its relevance to MPN-U prognosis. RESULTS: Multivariate analysis demonstrated bone marrow blast count and DIPSS plus score as statistically significant in predicting overall survival. Univariate analysis identified additional potential poor prognostic markers, including abnormal karyotype and absence of JAK2 mutation. Secondary mutations were frequent in the subset analyzed by next-generation sequencing (26/37 cases, 70.3%) with a borderline association between high molecular risk mutations and overall survival. CONCLUSIONS: This study, as one of the largest of MPN-U studies incorporating both clinicopathologic and molecular data, moves toward identification of biomarkers that better predict prognosis in this heterogeneous category.

20.
Sci Total Environ ; 927: 172076, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575021

RESUMO

Forests play a crucial role in mitigating climate change through carbon storage and sequestration, though environmental change drivers and management scenarios are likely to influence these contributions across multiple spatial and temporal scales. In this study, we employed three tree growth models-the Richard, Hossfeld, and Korf models-that account for the biological characteristics of trees, alongside national forest inventory (NFI) datasets from 1994 to 2018, to evaluate the carbon sink potential of existing forests and afforested regions in China from 2020 to 2100, assuming multiple afforestation and forest management scenarios. Our results indicate that the Richard, Hossfeld, and Korf models provided a good fit for 26 types of vegetation biomass in both natural and planted Chinese forests. These models estimate that in 2020, carbon stocks in existing Chinese forests are 7.62 ± 0.05 Pg C, equivalent to an average of 44.32 ± 0.32 Mg C/ ha. Our predictions then indicate this total forest carbon stock is expected to increase to 15.51 ± 0.99 Pg C (or 72.26 ± 4.6 Mg C/ha) in 2060, and further to 19.59 ± 1.36 Pg C (or 91.31 ± 6.33 Mg C/ha) in 2100. We also show that plantation management measures, namely tree species replacement, would increase carbon sinks to 0.09 Pg C/ year (contributing 38.9 %) in 2030 and 0.06 Pg C/ year (contributing 32.4 %) in 2060. Afforestation using tree species with strong carbon sink capacity in existing plantations would further significantly increase carbon sinks from 0.02 Pg C/year (contributing 10.3 %) in 2030 to 0.06 Pg C/year (contributing 28.2 %) in 2060. Our results quantify the role plantation management plays in providing a strong increase in forest carbon sequestration at national scales, pointing to afforestation with native tree species with high carbon sequestration as key in achieving China's 2060 carbon neutrality target.


Assuntos
Sequestro de Carbono , Mudança Climática , Florestas , Árvores , China , Agricultura Florestal/métodos , Carbono/análise , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...