Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38399249

RESUMO

The injury-triggered reocclusion (restenosis) of arteries treated with angioplasty to relieve atherosclerotic obstruction remains a challenge due to limitations of existing therapies. A combination of magnetic guidance and affinity-mediated arterial binding can pave the way to a new approach for treating restenosis by enabling efficient site-specific localization of therapeutic agents formulated in magnetizable nanoparticles (MNPs) and by maintaining their presence at the site of arterial injury throughout the vulnerability period of the disease. In these studies, we investigated a dual-targeted antirestenotic strategy using drug-loaded biodegradable MNPs, surface-modified with a fibrin-avid peptide to provide affinity for the injured arterial wall. The MNPs were characterized with regard to their magnetic properties, efficiency of surface functionalization, disassembly kinetics, and interaction with fibrin-coated substrates. The antiproliferative effects of MNPs formulated with paclitaxel were studied in vitro using a fetal cell line (A10) exhibiting the defining characteristics of neointimal smooth muscle cells. Animal studies examined the efficiency of combined (physical/affinity) MNP targeting to stented arteries in Sprague Dawley rats using fluorimetric analysis and fluorescent in vivo imaging. The antirestenotic effect of the dual-targeted therapy was determined in a rat model of in-stent restenosis 28 days post-treatment. The results showed that MNPs can be efficiently functionalized to exhibit a strong binding affinity using a simple two-step chemical process, without adversely affecting their size distribution, magnetic properties, or antiproliferative potency. Dual-targeted delivery strongly enhanced the localization and retention of MNPs in stented carotid arteries up to 7 days post-treatment, while minimizing redistribution of the carrier particles to peripheral tissues. Of the two targeting elements, the effect of magnetic guidance was shown to dominate arterial localization (p = 0.004 vs. 0.084 for magnetic targeting and peptide modification, respectively), consistent with the magnetically driven MNP accumulation step defining the extent of the ultimate affinity-mediated arterial binding and subsequent retention of the carrier particles. The enhanced arterial uptake and sustained presence of paclitaxel-loaded MNPs at the site of stent deployment were associated with a strong inhibition of restenosis in the rat carotid stenting model, with both the neointima-to-media ratio (N/M) and % stenosis markedly reduced in the dual-targeted treatment group (1.62 ± 0.2 and 21 ± 3 vs. 2.17 ± 0.40 and 29 ± 6 in the control animals; p < 0.05). We conclude that the dual-targeted delivery of antirestenotic agents formulated in fibrin-avid MNPs can provide a new platform for the safe and effective treatment of in-stent restenosis.

2.
Cardiovasc Pathol ; 25(6): 483-488, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27616613

RESUMO

Studying the morphology of the arterial response to endovascular stent implantation requires embedding the explanted stented artery in rigid materials such as poly(methyl methacrylate) to enable sectioning through both the in situ stent and the arterial wall, thus maintaining the proper anatomic relationships. This is a laborious, time-consuming process. Moreover, the technical quality of stained plastic sections is typically suboptimal and, in some cases, precludes immunohistochemical analysis. Here we describe a novel technique for dissolution of metallic and plastic stents that is compatible with subsequent embedding of "destented" arteries in paraffin, fine sectioning, major staining protocols, and immunohistochemistry.


Assuntos
Inclusão em Parafina/métodos , Poliésteres/química , Aço Inoxidável/química , Stents , Animais , Vasos Coronários/patologia , Imuno-Histoquímica , Masculino , Modelos Animais , Ratos , Ratos Sprague-Dawley , Solubilidade , Coloração e Rotulagem , Fixação de Tecidos
3.
J Control Release ; 222: 169-75, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26704936

RESUMO

Arterial injury and disruption of the endothelial layer are an inevitable consequence of interventional procedures used for treating obstructive vascular disease. The slow and often incomplete endothelium regrowth after injury is the primary cause of serious short- and long-term complications, including thrombosis, restenosis and neoatherosclerosis. Rapid endothelium restoration has the potential to prevent these sequelae, providing a rationale for developing strategies aimed at accelerating the reendothelialization process. The present studies focused on magnetically guided delivery of endothelial cells (EC) functionalized with biodegradable magnetic nanoparticles (MNP) as an experimental approach for achieving rapid and stable cell homing and expansion in stented arteries. EC laden with polylactide-based MNP exhibited strong magnetic responsiveness, capacity for cryopreservation and rapid expansion, and the ability to disintegrate internalized MNP in both proliferating and contact-inhibited states. Intracellular decomposition of BODIPY558/568-labeled MNP monitored non-invasively based on assembly state-dependent changes in the emission spectrum demonstrated cell proliferation rate-dependent kinetics (average disassembly rates: 6.6±0.8% and 3.6±0.4% per day in dividing and contact-inhibited EC, respectively). With magnetic guidance using a transient exposure to a uniform 1-kOe field, stable localization and subsequent propagation of MNP-functionalized EC, markedly enhanced in comparison to non-magnetic delivery conditions, were observed in stented rat carotid arteries. In conclusion, magnetically guided delivery is a promising experimental strategy for accelerating endothelial cell repopulation of stented blood vessels after angioplasty.


Assuntos
Lesões das Artérias Carótidas/terapia , Células Endoteliais/transplante , Nanopartículas/administração & dosagem , Animais , Compostos de Boro/química , Criopreservação , Corantes Fluorescentes/química , Fenômenos Magnéticos , Masculino , Nanopartículas/química , Poliésteres/química , Ratos , Ratos Endogâmicos Lew , Stents
4.
Biomaterials ; 51: 22-29, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25770994

RESUMO

Nanomedicine-based strategies have the potential to improve therapeutic performance of a wide range of anticancer agents. However, the successful implementation of nanoparticulate delivery systems requires the development of adequately sized nanocarriers delivering their therapeutic cargo to the target in a protected, pharmacologically active form. The present studies focused on a novel nanocarrier-based formulation strategy for SN-38, a topoisomerase I inhibitor with proven anticancer potential, whose clinical application is compromised by toxicity, poor stability and incompatibility with conventional delivery vehicles. SN-38 encapsulated in biodegradable sub-100 nm sized nanoparticles (NP) in the form of its rapidly activatable prodrug derivative with tocopherol succinate potently inhibited the growth of neuroblastoma cells in a dose- and exposure time-dependent manner, exhibiting a delayed response pattern distinct from that of free SN-38. In a xenograft model of neuroblastoma, prodrug-loaded NP caused rapid regression of established large tumors, significantly delayed tumor regrowth after treatment cessation and markedly extended animal survival. The NP formulation strategy enabled by a reversible chemical modification of the drug molecule offers a viable means for SN-38 delivery achieving sustained intratumoral drug levels and contributing to the potency and extended duration of antitumor activity, both prerequisites for effective treatment of neuroblastoma and other cancers.


Assuntos
Camptotecina/análogos & derivados , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Neuroblastoma/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Animais , Camptotecina/administração & dosagem , Camptotecina/química , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Irinotecano , Camundongos Nus , Neuroblastoma/patologia , Tamanho da Partícula , Pró-Fármacos/administração & dosagem , Resultado do Tratamento , alfa-Tocoferol/química , alfa-Tocoferol/farmacologia , alfa-Tocoferol/uso terapêutico
5.
J Vis Exp ; (90): e51653, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25145470

RESUMO

In-stent restenosis presents a major complication of stent-based revascularization procedures widely used to re-establish blood flow through critically narrowed segments of coronary and peripheral arteries. Endovascular stents capable of tunable release of genes with anti-restenotic activity may present an alternative strategy to presently used drug-eluting stents. In order to attain clinical translation, gene-eluting stents must exhibit predictable kinetics of stent-immobilized gene vector release and site-specific transduction of vasculature, while avoiding an excessive inflammatory response typically associated with the polymer coatings used for physical entrapment of the vector. This paper describes a detailed methodology for coatless tethering of adenoviral gene vectors to stents based on a reversible binding of the adenoviral particles to polyallylamine bisphosphonate (PABT)-modified stainless steel surface via hydrolysable cross-linkers (HC). A family of bifunctional (amine- and thiol-reactive) HC with an average t1/2 of the in-chain ester hydrolysis ranging between 5 and 50 days were used to link the vector with the stent. The vector immobilization procedure is typically carried out within 9 hr and consists of several steps: 1) incubation of the metal samples in an aqueous solution of PABT (4 hr); 2) deprotection of thiol groups installed in PABT with tris(2-carboxyethyl) phosphine (20 min); 3) expansion of thiol reactive capacity of the metal surface by reacting the samples with polyethyleneimine derivatized with pyridyldithio (PDT) groups (2 hr); 4) conversion of PDT groups to thiols with dithiothreitol (10 min); 5) modification of adenoviruses with HC (1 hr); 6) purification of modified adenoviral particles by size-exclusion column chromatography (15 min) and 7) immobilization of thiol-reactive adenoviral particles on the thiolated steel surface (1 hr). This technique has wide potential applicability beyond stents, by facilitating surface engineering of bioprosthetic devices to enhance their biocompatibility through the substrate-mediated gene delivery to the cells interfacing the implanted foreign material.


Assuntos
Stents Farmacológicos , Células Endoteliais/fisiologia , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Miócitos de Músculo Liso/fisiologia , Adenoviridae/química , Adenoviridae/genética , Angioplastia , Animais , Bovinos , Vetores Genéticos/química , Vetores Genéticos/genética , Masculino , Ratos , Ratos Sprague-Dawley
6.
Atherosclerosis ; 230(1): 23-32, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23958248

RESUMO

OBJECTIVE: Gene therapy with viral vectors encoding for NOS enzymes has been recognized as a potential therapeutic approach for the prevention of restenosis. Optimal activity of iNOS is dependent on the intracellular availability of L-Arg and BH4 via prevention of NOS decoupling and subsequent ROS formation. Herein, we investigated the effects of separate and combined L-Arg and BH4 supplementation on the production of NO and ROS in cultured rat arterial smooth muscle and endothelial cells transduced with AdiNOS, and their impact on the antirestenotic effectiveness of AdiNOS delivery to balloon-injured rat carotid arteries. METHODS AND RESULTS: Supplementation of AdiNOS transduced endothelial and vascular smooth muscle cells with L-Arg (3.0 mM), BH4 (10 µM) and especially their combination resulted in a significant increase in NO production as measured by nitrite formation in media. Formation of ROS was dose-dependently increased following transduction with increasing MOIs of AdiNOS. Exposure of RASMC to AdiNOS tethered to meshes via a hydrolyzable cross-linker, modeling viral delivery from stents, resulted in increased ROS production, which was decreased by supplementation with BH4 but not L-Arg or L-Arg/BH4. Enhanced cell death, caused by AdiNOS transduction, was also preventable with BH4 supplementation. In the rat carotid model of balloon injury, intraluminal delivery of AdiNOS in BH4-, L-Arg-, and especially in BH4 and L-Arg supplemented animals was found to significantly enhance the antirestenotic effects of AdiNOS-mediated gene therapy. CONCLUSIONS: Fine-tuning of iNOS function by L-Arg and BH4 supplementation in the transduced vasculature augments the therapeutic potential of gene therapy with iNOS for the prevention of restenosis.


Assuntos
Reestenose Coronária/terapia , Terapia Genética , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Adenoviridae/metabolismo , Animais , Aorta/metabolismo , Arginina/química , Biopterinas/análogos & derivados , Biopterinas/química , Artérias Carótidas/metabolismo , Proliferação de Células , Sobrevivência Celular , Reagentes de Ligações Cruzadas/química , Modelos Animais de Doenças , Masculino , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , NG-Nitroarginina Metil Éster/química , Ratos , Ratos Sprague-Dawley
7.
Biomaterials ; 34(28): 6938-48, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23777912

RESUMO

The use of arterial stents and other medical implants as a delivery platform for surface immobilized gene vectors allows for safe and efficient localized expression of therapeutic transgenes. In this study we investigate the use of hydrolyzable cross-linkers with distinct kinetics of hydrolysis for delivery of gene vectors from polyallylamine bisphosphonate-modified metal surfaces. Three cross-linkers with the estimated t1/2 of ester bonds hydrolysis of 5, 12 and 50 days demonstrated a cumulative 20%, 39% and 45% vector release, respectively, after 30 days exposure to physiological buffer at 37 °C. Transgene expression in endothelial and smooth muscles cells transduced with substrate immobilized adenovirus resulted in significantly different expression profiles for each individual cross-linker. Furthermore, immobilization of adenoviral vectors effectively extended their transduction effectiveness beyond the initial phase of release. Transgene expression driven by adenovirus-tethered stents in rat carotid arteries demonstrated that a faster rate of cross-linker hydrolysis resulted in higher expression levels at day 1, which declined by day 8 after stent implantation, while inversely, slower hydrolysis was associated with increased arterial expression at day 8 in comparison with day 1. In conclusion, adjustable release of transduction-competent adenoviral vectors from metallic surfaces can be achieved, both in vitro and in vivo, through surface immobilization of adenoviral vectors using hydrolyzable cross-linkers with structure-specific release kinetics.


Assuntos
Adenoviridae/genética , Terapia Genética/métodos , Transdução Genética/métodos , Animais , Técnicas de Transferência de Genes , Vetores Genéticos , Masculino , Ratos , Ratos Sprague-Dawley , Aço Inoxidável , Stents
8.
FASEB J ; 27(6): 2198-206, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23407712

RESUMO

Gene therapeutic strategies have shown promise in treating vascular disease. However, their translation into clinical use requires pharmaceutical carriers enabling effective, site-specific delivery as well as providing sustained transgene expression in blood vessels. While replication-deficient adenovirus (Ad) offers several important advantages as a vector for vascular gene therapy, its clinical applicability is limited by rapid inactivation, suboptimal transduction efficiency in vascular cells, and serious systemic adverse effects. We hypothesized that novel zinc oleate-based magnetic nanoparticles (MNPs) loaded with Ad would enable effective arterial cell transduction by shifting vector processing to an alternative pathway, protect Ad from inactivation by neutralizing factors, and allow site-specific gene transfer to arteries treated with stent angioplasty using a 2-source magnetic guidance strategy. Ad-loaded MNPs effectively transduced cultured endothelial and smooth muscle cells under magnetic conditions compared to controls and retained capacity for gene transfer after exposure to neutralizing antibodies and lithium iodide, a lytic agent causing disruption of free Ad. Localized arterial gene expression significantly stronger than in control animal groups was demonstrated after magnetically guided MNP delivery in a rat stenting model 2 and 9 d post-treatment, confirming feasibility of using Ad-loaded MNPs to achieve site-specific transduction in stented blood vessels. In conclusion, Ad-loaded MNPs formed by controlled precipitation of zinc oleate represent a novel delivery system, well-suited for efficient, magnetically targeted vascular gene transfer.


Assuntos
Adenoviridae/genética , Artérias , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Nanopartículas de Magnetita , Stents , Angioplastia , Animais , Artérias/metabolismo , Bovinos , Linhagem Celular , Terapia Genética , Masculino , Ácido Oleico , Ratos , Ratos Sprague-Dawley , Zinco
9.
Artigo em Inglês | MEDLINE | ID: mdl-26225356

RESUMO

A synergistic impact of research in the fields of post-angioplasty restenosis, drug-eluting stents and vascular gene therapy over the past 15 years has shaped the concept of gene-eluting stents. Gene-eluting stents hold promise of overcoming some biological and technical problems inherent to drug-eluting stent technology. As the field of gene-eluting stents matures it becomes evident that all three main design modules of a gene-eluting stent: a therapeutic transgene, a vector and a delivery system are equally important for accomplishing sustained inhibition of neointimal formation in arteries treated with gene delivery stents. This review summarizes prior work on stent-based gene delivery and discusses the main optimization strategies required to move the field of gene-eluting stents to clinical translation.

10.
Methodist Debakey Cardiovasc J ; 8(1): 23-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22891107

RESUMO

Magnetic guidance is a physical targeting strategy with the potential to improve the safety and efficacy of a variety of therapeutic agents--including small-molecule pharmaceuticals, proteins, gene vectors, and cells--by enabling their site-specific delivery. The application of magnetic targeting for in-stent restenosis can address the need for safer and more efficient treatment strategies. However, its translation to humans may not be possible without revising the traditional magnetic targeting scheme, which is limited by its inability to selectively guide therapeutic agents to deep localized targets. An alternative two-source strategy can be realized through the use of uniform, deep-penetrating magnetic fields in conjunction with vascular stents included as part of the magnetic setup and the platform for targeted delivery to injured arteries. Studies showing the feasibility of this novel targeting strategy in in-stent restenosis models and considerations in the design of carrier formulations for magnetically guided antirestenotic therapy are discussed in this review.


Assuntos
Angioplastia/instrumentação , Arteriopatias Oclusivas/terapia , Fármacos Cardiovasculares/administração & dosagem , Reestenose Coronária/terapia , Sistemas de Liberação de Medicamentos/métodos , Magnetismo , Stents , Angioplastia/efeitos adversos , Animais , Arteriopatias Oclusivas/tratamento farmacológico , Constrição Patológica , Reestenose Coronária/tratamento farmacológico , Humanos , Desenho de Prótese , Recidiva
11.
Dev Biol ; 366(2): 111-24, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22546693

RESUMO

The importance of the epicardium for myocardial and valvuloseptal development has been well established; perturbation of epicardial development results in cardiac abnormalities, including thinning of the ventricular myocardial wall and malformations of the atrioventricular valvuloseptal complex. To determine the spatiotemporal contribution of epicardially derived cells to the developing fibroblast population in the heart, we have used a mWt1/IRES/GFP-Cre mouse to trace the fate of EPDCs from embryonic day (ED)10 until birth. EPDCs begin to populate the compact ventricular myocardium around ED12. The migration of epicardially derived fibroblasts toward the interface between compact and trabecular myocardium is completed around ED14. Remarkably, epicardially derived fibroblasts do not migrate into the trabecular myocardium until after ED17. Migration of EPDCs into the atrioventricular cushion mesenchyme commences around ED12. As development progresses, the number of EPDCs increases significantly, specifically in the leaflets which derive from the lateral atrioventricular cushions. In these developing leaflets the epicardially derived fibroblasts eventually largely replace the endocardially derived cells. Importantly, the contribution of EPDCs to the leaflets derived from the major AV cushions is very limited. The differential contribution of EPDCs to the various leaflets of the atrioventricular valves provides a new paradigm in valve development and could lead to new insights into the pathogenesis of abnormalities that preferentially affect individual components of this region of the heart. The notion that there is a significant difference in the contribution of epicardially and endocardially derived cells to the individual leaflets of the atrioventricular valves has also important pragmatic consequences for the use of endocardial and epicardial cre-mouse models in studies of heart development.


Assuntos
Fibroblastos/citologia , Valvas Cardíacas/embriologia , Coração/embriologia , Pericárdio/citologia , Animais , Desenvolvimento Embrionário , Valvas Cardíacas/citologia , Ventrículos do Coração/citologia , Ventrículos do Coração/embriologia , Camundongos , Organogênese
12.
Stem Cells Int ; 2010: 602068, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-21048850

RESUMO

Background. Mouse embryonic stem (ES) cells can be differentiated in vitro by aggregation and/or retinoic acid (RA) treatment. The principal differentiation lineage in vitro is extraembryonic primitive endoderm. Dab2, Laminin, GATA4, GATA5, and GATA6 are expressed in embryonic primitive endoderm and play critical roles in its lineage commitment. Results. We found that in the absence of GATA4 or GATA5, RA-induced primitive endoderm differentiation of ES cells was reduced. GATA4 (-/-) ES cells express higher level of GATA5, GATA6, and hepatocyte nuclear factor 4 alpha marker of visceral endoderm lineage. GATA5 (-/-) ES cells express higher level of alpha fetoprotein marker of early liver development. GATA6 (-/-) ES cells express higher level of GATA5 as well as mesoderm and cardiomyocyte markers which are collagen III alpha-1 and tropomyosin1 alpha. Thus, deletion of GATA6 precluded endoderm differentiation but promoted mesoderm lineages. Conclusions. GATA4, GATA5, and GATA6 each convey a unique gene expression pattern and influences ES cell differentiation. We showed that ES cells can be directed to avoid differentiating into primitive endoderm and to adopt unique lineages in vitro by modulating GATA factors. The finding offers a potential approach to produce desirable cell types from ES cells, useful for regenerative cell therapy.

13.
Proc Natl Acad Sci U S A ; 107(18): 8346-51, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20404175

RESUMO

The use of stents for vascular disease has resulted in a paradigm shift with significant improvement in therapeutic outcomes. Polymer-coated drug-eluting stents (DES) have also significantly reduced the incidence of reobstruction post stenting, a disorder termed in-stent restenosis. However, the current DESs lack the capacity for adjustment of the drug dose and release kinetics to the disease status of the treated vessel. We hypothesized that these limitations can be addressed by a strategy combining magnetic targeting via a uniform field-induced magnetization effect and a biocompatible magnetic nanoparticle (MNP) formulation designed for efficient entrapment and delivery of paclitaxel (PTX). Magnetic treatment of cultured arterial smooth muscle cells with PTX-loaded MNPs caused significant cell growth inhibition, which was not observed under nonmagnetic conditions. In agreement with the results of mathematical modeling, significantly higher localization rates of locally delivered MNPs to stented arteries were achieved with uniform-field-controlled targeting compared to nonmagnetic controls in the rat carotid stenting model. The arterial tissue levels of stent-targeted MNPs remained 4- to 10-fold higher in magnetically treated animals vs. control over 5 days post delivery. The enhanced retention of MNPs at target sites due to the uniform field-induced magnetization effect resulted in a significant inhibition of in-stent restenosis with a relatively low dose of MNP-encapsulated PTX (7.5 microg PTX/stent). Thus, this study demonstrates the feasibility of site-specific drug delivery to implanted magnetizable stents by uniform field-controlled targeting of MNPs with efficacy for in-stent restenosis.


Assuntos
Sistemas de Liberação de Medicamentos , Magnetismo , Nanopartículas Metálicas/administração & dosagem , Paclitaxel/administração & dosagem , Stents , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Oclusão de Enxerto Vascular/prevenção & controle , Masculino , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Ratos , Ratos Sprague-Dawley
14.
Anat Rec A Discov Mol Cell Evol Biol ; 280(2): 1062-71, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15372489

RESUMO

The cGATA-6 gene is flanked by an enhancer that selectively marks the atrioventricular conduction system (AVCS) in transgenic mice. This enhancer reads anterior/posterior and medial/lateral positional information very early in the cardiogenic program and remains active in progressively more restricted regions of primary myocardium leading up to the emergence of a histologically distinct AVCS. We undertook to parse this enhancer to resolve how the respective AVCS-specific transcription program is regulated at the molecular level. We determined that this AVCS enhancer includes a 102 bp module that is sufficient to restrict expression to primary nonchamber myocardium. This offers a novel tool to analyze the early molecular delineation of primary and chamber myocardium, which subsequently give rise to components of the central and peripheral conduction system, respectively. Furthermore, we show that this 102 bp module in turn contains a nested 47 bp core module that has the potential to direct expression specifically to the AVCS domain of primary myocardium, albeit with low efficiency. Accordingly, we show that a GATA site and a GC-rich site in the 102 bp region bolster the activity of the nested 47 bp AVCS core region even within the context of the parental 1,478 bp enhancer. These are the first functional elements to be reported for a cardiac conduction system-specific control region.


Assuntos
Nó Atrioventricular/efeitos dos fármacos , Proteínas de Ligação a DNA/fisiologia , Elementos Facilitadores Genéticos , Genes Reguladores , Miocárdio/metabolismo , Fatores de Transcrição/fisiologia , Animais , Nó Atrioventricular/embriologia , Sequência de Bases , Proteínas de Ligação a DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Fator de Transcrição GATA6 , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Miocárdio/citologia , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...