Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 22(12): 1429-1442, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36475961

RESUMO

Motivated by the recent discovery of interstellar objects passing through the solar system, and by recent developments in dynamical simulations, this article reconsiders the likelihood for life-bearing rocks to be transferred from one planetary system to another. The astronomical aspects of this lithopanspermia process can now be estimated, including the cross sections for rock capture, the velocity distributions of rocky ejecta, the survival times for captured objects, and the dynamics of the solar system in both its birth cluster and in the field. The remaining uncertainties are primarily biological, that is, the probability of life developing on a planet, the time required for such an event, and the efficiency with which life becomes seeded in a new environment. Using current estimates for the input quantities, we find that the transfer rates are enhanced in the birth cluster, but the resulting odds for success are too low for panspermia to be a likely occurrence. In contrast, the expected inventory of alien rocks in the solar system is predicted to be substantial (where the vast majority of such bodies are not biologically active and do not interact with the Earth).

2.
Nature ; 585(7825): 363-367, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32939071

RESUMO

Astronomers have discovered thousands of planets outside the Solar System1, most of which orbit stars that will eventually evolve into red giants and then into white dwarfs. During the red giant phase, any close-orbiting planets will be engulfed by the star2, but more distant planets can survive this phase and remain in orbit around the white dwarf3,4. Some white dwarfs show evidence for rocky material floating in their atmospheres5, in warm debris disks6-9 or orbiting very closely10-12, which has been interpreted as the debris of rocky planets that were scattered inwards and tidally disrupted13. Recently, the discovery of a gaseous debris disk with a composition similar to that of ice giant planets14 demonstrated that massive planets might also find their way into tight orbits around white dwarfs, but it is unclear whether these planets can survive the journey. So far, no intact planets have been detected in close orbits around white dwarfs. Here we report the observation of a giant planet candidate transiting the white dwarf WD 1856+534 (TIC 267574918) every 1.4 days. We observed and modelled the periodic dimming of the white dwarf caused by the planet candidate passing in front of the star in its orbit. The planet candidate is roughly the same size as Jupiter and is no more than 14 times as massive (with 95 per cent confidence). Other cases of white dwarfs with close brown dwarf or stellar companions are explained as the consequence of common-envelope evolution, wherein the original orbit is enveloped during the red giant phase and shrinks owing to friction. In this case, however, the long orbital period (compared with other white dwarfs with close brown dwarf or stellar companions) and low mass of the planet candidate make common-envelope evolution less likely. Instead, our findings for the WD 1856+534 system indicate that giant planets can be scattered into tight orbits without being tidally disrupted, motivating the search for smaller transiting planets around white dwarfs.

3.
Science ; 369(6508): 1233-1238, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32883866

RESUMO

Young stars are surrounded by a circumstellar disk of gas and dust, within which planet formation can occur. Gravitational forces in multiple star systems can disrupt the disk. Theoretical models predict that if the disk is misaligned with the orbital plane of the stars, the disk should warp and break into precessing rings, a phenomenon known as disk tearing. We present observations of the triple-star system GW Orionis, finding evidence for disk tearing. Our images show an eccentric ring that is misaligned with the orbital planes and the outer disk. The ring casts shadows on a strongly warped intermediate region of the disk. If planets can form within the warped disk, disk tearing could provide a mechanism for forming wide-separation planets on oblique orbits.

4.
Science ; 344(6181): 277-80, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24744370

RESUMO

The quest for Earth-like planets is a major focus of current exoplanet research. Although planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surfaces. We present the detection of Kepler-186f, a 1.11 ± 0.14 Earth-radius planet that is the outermost of five planets, all roughly Earth-sized, that transit a 0.47 ± 0.05 solar-radius star. The intensity and spectrum of the star's radiation place Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and water at its surface, then some of this water is likely to be in liquid form.


Assuntos
Planetas , Astros Celestes , Planeta Terra , Exobiologia , Meio Ambiente Extraterreno , Água
5.
Astrobiology ; 5(4): 497-514, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16078868

RESUMO

This paper considers the lithopanspermia hypothesis in star-forming groups and clusters, where the chances of biological material spreading from one solar system to another is greatly enhanced (relative to action in the field) because of the close proximity of the systems and lower relative velocities. These effects more than compensate for the reduced time spent in such crowded environments. This paper uses approximately 300,000 Monte Carlo scattering calculations to determine the cross sections for rocks to be captured by binaries and provides fitting formulae for other applications. We assess the odds of transfer as a function of the ejection speed v (eject) and number N(.) of members in the birth aggregate. The odds of any given ejected meteoroid being recaptured by another solar system are relatively low, about 1:10(3)-10(6) over the expected range of ejection speeds and cluster sizes. Because the number of ejected rocks (with mass m > 10 kg) per system can be large, N (R) approximately 10(16), virtually all solar systems are likely to share rocky ejecta with all of the other solar systems in their birth cluster. The number of ejected rocks that carry living microorganisms is much smaller and less certain, but we estimate that N (B) approximately 10(7) rocks can be ejected from a biologically active solar system. For typical birth environments, the capture of life-bearing rocks is expected to occur N (bio) asymptotically equal to 10-16,000 times (per cluster), depending on the ejection speeds. Only a small fraction (f (imp) approximately 10(4)) of the captured rocks impact the surfaces of terrestrial planets, so that N (lps) asymptotically equal to 10(3)-1.6 lithopanspermia events are expected per cluster (under favorable conditions). Finally, we discuss the question of internal versus external seeding of clusters and the possibility of Earth seeding young clusters over its biologically active lifetime.


Assuntos
Astronomia , Exobiologia , Meteoroides , Fenômenos Astronômicos , Meio Ambiente Extraterreno , Método de Monte Carlo , Origem da Vida , Sistema Solar , Simulação de Ambiente Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...