Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Top Life Sci ; 3(2): 207-219, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33523149

RESUMO

Biodiversity continues to decline under the effect of multiple human pressures. We give a brief overview of the main pressures on biodiversity, before focusing on the two that have a predominant effect: land-use and climate change. We discuss how interactions between land-use and climate change in terrestrial systems are likely to have greater impacts than expected when only considering these pressures in isolation. Understanding biodiversity changes is complicated by the fact that such changes are likely to be uneven among different geographic regions and species. We review the evidence for variation in terrestrial biodiversity changes, relating differences among species to key ecological characteristics, and explaining how disproportionate impacts on certain species are leading to a spatial homogenisation of ecological communities. Finally, we explain how the overall losses and homogenisation of biodiversity, and the larger impacts upon certain types of species, are likely to lead to strong negative consequences for the functioning of ecosystems, and consequently for human well-being.

2.
Glob Chang Biol ; 19(11): 3540-52, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23749600

RESUMO

Climate warming has been linked to an apparent general decrease in body sizes of ectotherms, both across and within taxa, especially in aquatic systems. Smaller body size in warmer geographical regions has also been widely observed. Since body size is a fundamental determinant of many biological attributes, climate-warming-related changes in size could ripple across multiple levels of ecological organization. Some recent studies have questioned the ubiquity of temperature-size rules, however, and certain widespread and abundant taxa, such as diatoms, may be important exceptions. We tested the hypothesis that diatoms are smaller at warmer temperatures using a system of geothermally heated streams. There was no consistent relationship between size and temperature at either the population or community level. These field data provide important counterexamples to both James' and Bergmann's temperature-size rules, respectively, undermining the widely held assumption that warming favours the small. This study provides compelling new evidence that diatoms are an important exception to temperature-size rules for three reasons: (i) we use many more species than prior work; (ii) we examine both community and species levels of organization simultaneously; (iii) we work in a natural system with a wide temperature gradient but minimal variation in other factors, to achieve robust tests of hypotheses without relying on laboratory setups, which have limited realism. In addition, we show that interspecific effects were a bigger contributor to whole-community size differences, and are probably more ecologically important than more commonly studied intraspecific effects. These findings highlight the need for multispecies approaches in future studies of climate warming and body size.


Assuntos
Diatomáceas/citologia , Ecossistema , Mudança Climática , Diatomáceas/classificação , Islândia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA