Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 132(4): 956-965, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35142563

RESUMO

A better understanding of the strains experienced by the Achilles tendon during commonly prescribed exercises and locomotor tasks is needed to improve efficacy of Achilles tendon training and rehabilitation programs. The aim of this study was to estimate in vivo free Achilles tendon strain during selected rehabilitation, locomotor, jumping, and landing tasks. Sixteen trained runners with no symptoms of Achilles tendinopathy participated in this study. Personalized free Achilles tendon moment arm and force-strain curve were obtained from imaging data and used in conjunction with motion capture and surface electromyography to estimate free Achilles tendon strain using electromyogram-informed neuromusculoskeletal modeling. There was a strong correspondence between Achilles tendon force estimates from the present study and experimental data reported in the literature (R2 > 0.85). The average tendon strain was highest for maximal hop landing (8.8 ± 1.6%), lowest for walking at 1.4 m/s (3.1 ± 0.8%), and increased with locomotor speed during running (run 3.0 m/s: 6.5 ± 1.6%; run 5.0 m/s: 7.9 ± 1.7%) and during heel rise exercise with added mass (BW: 5.8 ± 1.3%; 1.2 BW: 6.9 ± 1.7%). The peak tendon strain was highest during running (5 m/s: 13.7 ± 2.5%) and lowest during walking (1.4 m/s: 7 ± 1.8%). Overall findings provide a preliminary evidence base for exercise selection to maximize anabolic tendon remodeling during training and rehabilitation of the Achilles tendon.NEW & NOTEWORTHY Our work combines medical imaging and electromyogram-informed neuromusculoskeletal modeling data to estimate free Achilles tendon strain during selected rehabilitation, locomotor, jumping, and landing tasks in trained middle-distance runners. These data may potentially be used to inform Achilles tendon training and rehabilitation to maximize anabolic tendon remodeling.


Assuntos
Tendão do Calcâneo , Corrida , Tendinopatia , Traumatismos dos Tendões , Fenômenos Biomecânicos , Humanos , Caminhada
2.
Front Physiol ; 11: 965, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973544

RESUMO

Tendon geometry and tissue properties are important determinants of tendon function and injury risk and are altered in response to ageing, disease, and physical activity levels. The purpose of this study was to compare free Achilles tendon geometry and mechanical properties between trained elite/sub-elite middle-distance runners and a healthy control group. Magnetic resonance imaging (MRI) was used to measure free Achilles tendon volume, length, average cross-sectional area (CSA), regional CSA, moment arm, and T2* relaxation time at rest, while freehand three-dimensional ultrasound (3DUS) was used to quantify free Achilles tendon mechanical stiffness, Young's modulus, and length normalised mechanical stiffness. The free Achilles tendon in trained runners was significantly shorter and the average and regional CSA (distal end) were significantly larger compared to the control group. Mechanical stiffness of the free Achilles tendon was also significantly higher in trained runners compared to controls, which was explained by the group differences in tendon CSA and length. T2* relaxation time was significantly longer in trained middle-distance runners when compared to healthy controls. There was no relationship between T2* relaxation time and Young's modulus. The longer T2* relaxation time in trained runners may be indicative of accumulated damage, disorganised collagen, and increased water content in the free Achilles tendon. A short free Achilles tendon with large CSA and higher mechanical stiffness may enable trained runners to rapidly transfer high muscle forces and possibly reduce the risk of tendon damage from mechanical fatigue.

3.
Ultrasound Med Biol ; 45(11): 2898-2905, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31471069

RESUMO

The purpose of this study was to assess the similarity of free Achilles tendon shape and 3-D geometry between magnetic resonance imaging (MRI) and freehand 3-D ultrasound (3-DUS) imaging methods. Fourteen elite/sub-elite middle-distance runners participated in the study. MRI and 3-DUS scans of the Achilles tendon were acquired on two separate imaging sessions, and all 3-D reconstructions were performed using identical methods. Shape similarity of free Achilles tendon reconstructed from MRI and 3-DUS data was assessed using Jaccard index, Hausdorff distance and root mean square error (RMSE). The Jaccard index, Hausdorff distance and RMSE values were 0.76 ± 0.05, 2.70 ± 0.70 and 0.61 ± 0.10 mm, respectively. The level of agreement between MRI and 3-DUS for free Achilles tendon volume, length and average cross-sectional area (CSA) was assessed using Bland-Altman analysis. Compared to MRI, freehand 3-DUS overestimated volume, length and average CSA by 30.6 ± 15.8 mm3 (1.1% ± 0.6%), 0.3 ± 0.7 mm (0.6% ± 1.9%) and 0.3 ± 1.42 mm2 (0.4% ± 2.0%), respectively. The upper and lower limits of agreement between MRI and 3-DUS for volume, length and average CSA were -0.4 to 61.7 mm3 (-0.2% to 2.3%), -1.0 to 1.5 mm (-3.2% to 4.5%) and -2.5 to 3.1 mm2 (-3.5% to 4.3%), respectively. There were no significant differences between imaging methods in CSA along the length of the tendon. In conclusion, MRI and freehand 3-DUS may be considered equivalent methods for estimating shape and 3-D geometry of the free Achilles tendon. These findings, together with the practical benefits of being able to assess 3-D Achilles tendon shape and geometry in a laboratory environment and under isometric loading, make 3-DUS an attractive alternative to MRI for assessing 3-D free Achilles tendon macro-structure in future studies.


Assuntos
Tendão do Calcâneo/diagnóstico por imagem , Atletas , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Ultrassonografia/métodos , Adulto , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...