Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746441

RESUMO

Epidemiological studies show that exposure to the organochlorine pesticide dieldrin is associated with increased risk of Parkinson's disease (PD). Animal studies support a link between developmental dieldrin exposure and increased neuronal susceptibility in the α-synuclein preformed fibril (α-syn PFF) and MPTP models in adult male C57BL/6 mice. In a previous study, we showed that developmental dieldrin exposure was associated with sex-specific changes in DNA modifications within genes related to dopaminergic neuron development and maintenance at 12 weeks of age. Here, we used capture hybridization-sequencing with custom baits to interrogate DNA modifications across the entire genetic loci of the previously identified genes at multiple time points - birth, 6 weeks, 12 weeks, and 36 weeks old. We identified largely sex-specific dieldrin-induced changes in DNA modifications at each time point that annotated to pathways important for neurodevelopment, potentially related to critical steps in early neurodevelopment, dopaminergic neuron differentiation, synaptogenesis, synaptic plasticity, and glial-neuron interactions. Despite large numbers of age-specific DNA modifications, longitudinal analysis identified a small number of DMCs with dieldrin-induced deflection of epigenetic aging. The sex-specificity of these results adds to evidence that sex-specific responses to PD-related exposures may underly sex-specific differences in disease. Overall, these data support the idea that developmental dieldrin exposure leads to changes in epigenetic patterns that persist after the exposure period and disrupt critical neurodevelopmental pathways, thereby impacting risk of late life diseases, including PD.

2.
Oncogene ; 43(19): 1411-1430, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38480916

RESUMO

Malignant peripheral nerve sheath tumors (MPNSTs) are chemotherapy resistant sarcomas that are a leading cause of death in neurofibromatosis type 1 (NF1). Although NF1-related MPNSTs derive from neural crest cell origin, they also exhibit intratumoral heterogeneity. TP53 mutations are associated with significantly decreased survival in MPNSTs, however the mechanisms underlying TP53-mediated therapy responses are unclear in the context of NF1-deficiency. We evaluated the role of two commonly altered genes, MET and TP53, in kinome reprograming and cellular differentiation in preclinical MPNST mouse models. We previously showed that MET amplification occurs early in human MPNST progression and that Trp53 loss abrogated MET-addiction resulting in MET inhibitor resistance. Here we demonstrate a novel mechanism of therapy resistance whereby p53 alters MET stability, localization, and downstream signaling leading to kinome reprogramming and lineage plasticity. Trp53 loss also resulted in a shift from RAS/ERK to AKT signaling and enhanced sensitivity to MEK and mTOR inhibition. In response to MET, MEK and mTOR inhibition, we observed broad and heterogeneous activation of key differentiation genes in Trp53-deficient lines suggesting Trp53 loss also impacts lineage plasticity in MPNSTs. These results demonstrate the mechanisms by which p53 loss alters MET dependency and therapy resistance in MPNSTS through kinome reprogramming and phenotypic flexibility.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neurofibromatose 1 , Inibidores de Proteínas Quinases , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Camundongos , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Neurofibromina 1/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Neoplasias de Bainha Neural/genética , Neoplasias de Bainha Neural/patologia , Neoplasias de Bainha Neural/tratamento farmacológico , Linhagem Celular Tumoral , Transdução de Sinais , Linhagem da Célula/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Neurofibrossarcoma/genética , Neurofibrossarcoma/patologia , Neurofibrossarcoma/tratamento farmacológico , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/genética
3.
Nat Commun ; 15(1): 2642, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531900

RESUMO

A key hallmark of Parkinson's disease (PD) is Lewy pathology. Composed of α-synuclein, Lewy pathology is found both in dopaminergic neurons that modulate motor function, and cortical regions that control cognitive function. Recent work has established the molecular identity of dopaminergic neurons susceptible to death, but little is known about cortical neurons susceptible to Lewy pathology or molecular changes induced by aggregates. In the current study, we use spatial transcriptomics to capture whole transcriptome signatures from cortical neurons with α-synuclein pathology compared to neurons without pathology. We find, both in PD and related PD dementia, dementia with Lewy bodies and in the pre-formed fibril α-synucleinopathy mouse model, that specific classes of excitatory neurons are vulnerable to developing Lewy pathology. Further, we identify conserved gene expression changes in aggregate-bearing neurons that we designate the Lewy-associated molecular dysfunction from aggregates (LAMDA) signature. Neurons with aggregates downregulate synaptic, mitochondrial, ubiquitin-proteasome, endo-lysosomal, and cytoskeletal genes and upregulate DNA repair and complement/cytokine genes. Our results identify neurons vulnerable to Lewy pathology in the PD cortex and describe a conserved signature of molecular dysfunction in both mice and humans.


Assuntos
Doença por Corpos de Lewy , Doença de Parkinson , Sinucleinopatias , Humanos , Camundongos , Animais , alfa-Sinucleína/metabolismo , Doença por Corpos de Lewy/patologia , Doença de Parkinson/metabolismo , Neurônios Dopaminérgicos/metabolismo , Perfilação da Expressão Gênica
4.
bioRxiv ; 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37292685

RESUMO

Lewy pathology composed of α-synuclein is the key pathological hallmark of Parkinson's disease (PD), found both in dopaminergic neurons that control motor function, and throughout cortical regions that control cognitive function. Recent work has investigated which dopaminergic neurons are most susceptible to death, but little is known about which neurons are vulnerable to developing Lewy pathology and what molecular changes an aggregate induces. In the current study, we use spatial transcriptomics to selectively capture whole transcriptome signatures from cortical neurons with Lewy pathology compared to those without pathology in the same brains. We find, both in PD and in a mouse model of PD, that there are specific classes of excitatory neurons that are vulnerable to developing Lewy pathology in the cortex. Further, we identify conserved gene expression changes in aggregate-bearing neurons that we designate the Lewy-associated molecular dysfunction from aggregates (LAMDA) signature. This gene signature indicates that neurons with aggregates downregulate synaptic, mitochondrial, ubiquitin-proteasome, endo-lysosomal, and cytoskeletal genes and upregulate DNA repair and complement/cytokine genes. However, beyond DNA repair gene upregulation, we find that neurons also activate apoptotic pathways, suggesting that if DNA repair fails, neurons undergo programmed cell death. Our results identify neurons vulnerable to Lewy pathology in the PD cortex and identify a conserved signature of molecular dysfunction in both mice and humans.

5.
Reprod Biol Endocrinol ; 21(1): 43, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170094

RESUMO

Endometrial epithelia are known to harbor cancer driver mutations in the absence of any pathologies, including mutations in PIK3CA. Insulin plays an important role in regulating uterine metabolism during pregnancy, and hyperinsulinemia is associated with conditions impacting fertility. Hyperinsulinemia also promotes cancer, but the direct action of insulin on mutated endometrial epithelial cells is unknown. Here, we treated 12Z endometriotic epithelial cells carrying the PIK3CAH1047R oncogene with insulin and examined transcriptomes by RNA-seq. While cells naively responded to insulin, the magnitude of differential gene expression (DGE) was nine times greater in PIK3CAH1047R cells, representing a synergistic effect between insulin signaling and PIK3CAH1047R expression. Interferon signaling and the unfolded protein response (UPR) were enriched pathways among affected genes. Insulin treatment in wild-type cells activated normal endoplasmic reticulum stress (ERS) response programs, while PIK3CAH1047R cells activated programs necessary to avoid ERS-induced apoptosis. PIK3CAH1047R expression alone resulted in overexpression (OE) of Viperin (RSAD2), which is involved in viral response and upregulated in the endometrium during early pregnancy. The transcriptional changes induced by insulin in PIK3CAH1047R cells were rescued by knockdown of Viperin, while Viperin OE alone was insufficient to induce a DGE response to insulin, suggesting that Viperin is necessary but not sufficient for the synergistic effect of PIK3CAH1047R and insulin treatment. We identified interferon signaling, viral response, and protein targeting pathways that are induced by insulin but dependent on Viperin in PIK3CAH1047R mutant cells. These results suggest that response to insulin signaling is altered in mutated endometriotic epithelial cells.


Assuntos
Hiperinsulinismo , Neoplasias , Feminino , Humanos , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Células Epiteliais/metabolismo , Insulina/farmacologia , Insulina/genética , Interferons/genética , Mutação , Endométrio/metabolismo
6.
RNA Biol ; 20(1): 186-197, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37095747

RESUMO

Here, we provide an in-depth analysis of the usefulness of single-sample metabolite/RNA extraction for multi-'omics readout. Using pulverized frozen livers of mice injected with lymphocytic choriomeningitis virus (LCMV) or vehicle (Veh), we isolated RNA prior (RNA) or following metabolite extraction (MetRNA). RNA sequencing (RNAseq) data were evaluated for differential expression analysis and dispersion, and differential metabolite abundance was determined. Both RNA and MetRNA clustered together by principal component analysis, indicating that inter-individual differences were the largest source of variance. Over 85% of LCMV versus Veh differentially expressed genes were shared between extraction methods, with the remaining 15% evenly and randomly divided between groups. Differentially expressed genes unique to the extraction method were attributed to randomness around the 0.05 FDR cut-off and stochastic changes in variance and mean expression. In addition, analysis using the mean absolute difference showed no difference in the dispersion of transcripts between extraction methods. Altogether, our data show that prior metabolite extraction preserves RNAseq data quality, which enables us to confidently perform integrated pathway enrichment analysis on metabolomics and RNAseq data from a single sample. This analysis revealed pyrimidine metabolism as the most LCMV-impacted pathway. Combined analysis of genes and metabolites in the pathway exposed a pattern in the degradation of pyrimidine nucleotides leading to uracil generation. In support of this, uracil was among the most differentially abundant metabolites in serum upon LCMV infection. Our data suggest that hepatic uracil export is a novel phenotypic feature of acute infection and highlight the usefulness of our integrated single-sample multi-'omics approach.


Assuntos
Metabolômica , Viroses , Animais , Camundongos , Análise de Sequência de RNA , Fígado , RNA
7.
Nat Commun ; 14(1): 690, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755033

RESUMO

Species is the fundamental unit to quantify biodiversity. In recent years, the model yeast Saccharomyces cerevisiae has seen an increased number of studies related to its geographical distribution, population structure, and phenotypic diversity. However, seven additional species from the same genus have been less thoroughly studied, which has limited our understanding of the macroevolutionary events leading to the diversification of this genus over the last 20 million years. Here, we show the geographies, hosts, substrates, and phylogenetic relationships for approximately 1,800 Saccharomyces strains, covering the complete genus with unprecedented breadth and depth. We generated and analyzed complete genome sequences of 163 strains and phenotyped 128 phylogenetically diverse strains. This dataset provides insights about genetic and phenotypic diversity within and between species and populations, quantifies reticulation and incomplete lineage sorting, and demonstrates how gene flow and selection have affected traits, such as galactose metabolism. These findings elevate the genus Saccharomyces as a model to understand biodiversity and evolution in microbial eukaryotes.


Assuntos
Saccharomyces cerevisiae , Saccharomyces , Saccharomyces cerevisiae/genética , Filogenia , Saccharomyces/genética , Biodiversidade , Fenótipo
8.
Reprod Biol Endocrinol ; 20(1): 163, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36424602

RESUMO

Obesity impacts fertility and is positively correlated with endometrial hyperplasia and endometrial cancer occurrence. Endometrial epithelia often harbor disease driver-mutations, while endometrial stroma are highly regulative of neighboring epithelia. Here, we sought to determine distinct transcriptome changes occurring in individual cell types in the obese mouse uterus. Outbred CD-1 mice were fed high-fat or control diets for 18 weeks, estrous cycle staged, and endometrial epithelia, macrophages, and stroma isolated for transcriptomic analysis. High-fat diet mice displayed increased body mass and developed glucose intolerance, hyperinsulinemia, and fatty liver. Obese mouse epithelia displayed differential gene expression for genes related to innate immunity and leukocyte chemotaxis. The obese mouse stroma differentially expressed factors related to circadian rhythm, and expression of these genes correlated with glucose tolerance or body mass. We observed correlations between F4/80 + macrophage numbers, Cleaved Caspase 3 (CC3) apoptosis marker staining and glucose intolerance among obese mice, including a subgroup of obese mice with high CC3 + luminal epithelia. This subgroup displayed differential gene expression among all cell types, with pathways related to immune escape in epithelia and macrophages, while the stroma dysregulated pathways related to regulation of epithelia. These results suggest an important role for differential response of both the epithelia and stroma in their response to obesity, while macrophages are dysregulated in the context of apoptotic epithelia. The obesity-related gene expression programs in cells within the uterine microenvironment may influence the ability of the endometrium to function during pregnancy and influence disease pathogenesis.


Assuntos
Intolerância à Glucose , Transcriptoma , Gravidez , Feminino , Camundongos , Animais , Camundongos Obesos , Obesidade/genética , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos
9.
BMC Biol ; 20(1): 209, 2022 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-36153585

RESUMO

BACKGROUND: SWI/SNF (BAF) chromatin remodeling complexes regulate lineage-specific enhancer activity by promoting accessibility for diverse DNA-binding factors and chromatin regulators. Additionally, they are known to modulate the function of the epigenome through regulation of histone post-translational modifications and nucleosome composition, although the way SWI/SNF complexes govern the epigenome remains poorly understood. Here, we investigate the function of ARID1A, a subunit of certain mammalian SWI/SNF chromatin remodeling complexes associated with malignancies and benign diseases originating from the uterine endometrium. RESULTS: Through genome-wide analysis of human endometriotic epithelial cells, we show that more than half of ARID1A binding sites are marked by the variant histone H3.3, including active regulatory elements such as super-enhancers. ARID1A knockdown leads to H3.3 depletion and gain of canonical H3.1/3.2 at ARID1A-bound active regulatory elements, and a concomitant redistribution of H3.3 toward genic elements. ARID1A interactions with the repressive chromatin remodeler CHD4 (NuRD) are associated with H3.3, and ARID1A is required for CHD4 recruitment to H3.3. ZMYND8 interacts with CHD4 to suppress a subset of ARID1A, CHD4, and ZMYND8 co-bound, H3.3+ H4K16ac+ super-enhancers near genes governing extracellular matrix, motility, adhesion, and epithelial-to-mesenchymal transition. Moreover, these gene expression alterations are observed in human endometriomas. CONCLUSIONS: These studies demonstrate that ARID1A-containing BAF complexes are required for maintenance of the histone variant H3.3 at active regulatory elements, such as super-enhancers, and this function is required for the physiologically relevant activities of alternative chromatin remodelers.


Assuntos
Cromatina , Proteínas de Ligação a DNA , Histonas , Fatores de Transcrição , Cromatina/genética , Montagem e Desmontagem da Cromatina , DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Histonas/genética , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Nucleossomos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Cell Genom ; 2(7)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35873672

RESUMO

We have developed a mouse DNA methylation array that contains 296,070 probes representing the diversity of mouse DNA methylation biology. We present a mouse methylation atlas as a rich reference resource of 1,239 DNA samples encompassing distinct tissues, strains, ages, sexes, and pathologies. We describe applications for comparative epigenomics, genomic imprinting, epigenetic inhibitors, patient-derived xenograft assessment, backcross tracing, and epigenetic clocks. We dissect DNA methylation processes associated with differentiation, aging, and tumorigenesis. Notably, we find that tissue-specific methylation signatures localize to binding sites for transcription factors controlling the corresponding tissue development. Age-associated hypermethylation is enriched at regions of Polycomb repression, while hypomethylation is enhanced at regions bound by cohesin complex members. Apc Min/+ polyp-associated hypermethylation affects enhancers regulating intestinal differentiation, while hypomethylation targets AP-1 binding sites. This Infinium Mouse Methylation BeadChip (version MM285) is widely accessible to the research community and will accelerate high-sample-throughput studies in this important model organism.

11.
Mol Cancer Ther ; 21(8): 1296-1305, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35657345

RESUMO

Desmoplastic small round cell tumor (DSRCT) is a rare pediatric sarcoma with poor overall survival. This tumor is absolutely dependent on the continued expression and activity of its defining molecular lesion, the EWS-WT1 transcription factor. Unfortunately, the therapeutic targeting of transcription factors is challenging, and there is a critical need to identify compounds that inhibit EWS-WT1. Here we show that the compound lurbinectedin inhibits EWS-WT1 by redistributing the protein within the nucleus to the nucleolus. This nucleolar redistribution interferes with the activity of EWS-WT1 to reverse the expression of over 70% of the transcriptome. In addition, the compound blocks the expression of the EWS-WT1 fusion protein to inhibit cell proliferation at the lowest GI50 ever reported for this compound in any cell type. The effects occur at concentrations that are easily achievable in the clinic and translate to the in vivo setting to cause tumor regressions in multiple mice in a xenograft and PDX model of DSRCT. Importantly, this mechanism of nucleolar redistribution is also seen with wild-type EWSR1 and the related fusion protein EWS-FLI1. This provides evidence for a "class effect" for the more than 18 tumors driven by EWSR1 fusion proteins. More importantly, the data establish lurbinectedin as a promising clinical candidate for DSRCT.


Assuntos
Carbolinas , Tumor Desmoplásico de Pequenas Células Redondas , Compostos Heterocíclicos de 4 ou mais Anéis , Proteínas de Fusão Oncogênica , Sarcoma , Animais , Carbolinas/farmacologia , Tumor Desmoplásico de Pequenas Células Redondas/tratamento farmacológico , Tumor Desmoplásico de Pequenas Células Redondas/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Camundongos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo
12.
Cells ; 11(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35326450

RESUMO

Endometrial cancer (EC) is characterized by high estrogen levels unopposed by progesterone. Treatment with progestins is standard for early EC, but the response to progestins is dependent on progesterone receptor (PGR) expression. Here, we show that the expression of PGR in endometrial epithelial cells is dependent on ARID1A, a DNA-binding subunit of the SWI/SNF chromatin-remodeling complex that is commonly mutated in EC. In endometrial epithelial cells with estrogen receptor overexpression, we find that ARID1A promotes estrogen signaling and regulates common gene expression programs. Normally, endometrial epithelial cells expressing estrogen receptors respond to estrogen by upregulating the PGR. However, when ARID1A expression is lost, upregulation of PGR expression is significantly reduced. This phenomenon can also occur following the loss of the SWI/SNF subunit BRG1, suggesting a role for ARID1A- and BRG1-containing complexes in PGR regulation. We find that PGR is regulated by a bivalent promoter, which harbors both H3K4me3 and H3K27me3 histone tail modifications. H3K27me3 is deposited by EZH2, and inhibition of EZH2 in the context of ARID1A loss results in restoration of estrogen-induced PGR expression. Our results suggest a role for ARID1A deficiency in the loss of PGR in late-stage EC and a therapeutic utility for EZH2 inhibitors in this disease.


Assuntos
Histonas , Proteínas Nucleares , Estrogênios/farmacologia , Feminino , Humanos , Proteínas Nucleares/metabolismo , Progestinas/farmacologia , Receptores de Progesterona/metabolismo
13.
PLoS Genet ; 17(12): e1009986, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34941867

RESUMO

TP53 and ARID1A are frequently mutated across cancer but rarely in the same primary tumor. Endometrial cancer has the highest TP53-ARID1A mutual exclusivity rate. However, the functional relationship between TP53 and ARID1A mutations in the endometrium has not been elucidated. We used genetically engineered mice and in vivo genomic approaches to discern both unique and overlapping roles of TP53 and ARID1A in the endometrium. TP53 loss with oncogenic PIK3CAH1047R in the endometrial epithelium results in features of endometrial hyperplasia, adenocarcinoma, and intraepithelial carcinoma. Mutant endometrial epithelial cells were transcriptome profiled and compared to control cells and ARID1A/PIK3CA mutant endometrium. In the context of either TP53 or ARID1A loss, PIK3CA mutant endometrium exhibited inflammatory pathway activation, but other gene expression programs differed based on TP53 or ARID1A status, such as epithelial-to-mesenchymal transition. Gene expression patterns observed in the genetic mouse models are reflective of human tumors with each respective genetic alteration. Consistent with TP53-ARID1A mutual exclusivity, the p53 pathway is activated following ARID1A loss in the endometrial epithelium, where ARID1A normally directly represses p53 pathway genes in vivo, including the stress-inducible transcription factor, ATF3. However, co-existing TP53-ARID1A mutations led to invasive adenocarcinoma associated with mutant ARID1A-driven ATF3 induction, reduced apoptosis, TP63+ squamous differentiation and invasion. These data suggest TP53 and ARID1A mutations drive shared and distinct tumorigenic programs in the endometrium and promote invasive endometrial cancer when existing simultaneously. Hence, TP53 and ARID1A mutations may co-occur in a subset of aggressive or metastatic endometrial cancers, with ARID1A loss promoting squamous differentiation and the acquisition of invasive properties.


Assuntos
Proteínas de Ligação a DNA/genética , Neoplasias do Endométrio/genética , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Carcinogênese/genética , Carcinoma in Situ/genética , Carcinoma in Situ/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Hiperplasia Endometrial/genética , Hiperplasia Endometrial/patologia , Neoplasias do Endométrio/patologia , Endométrio/patologia , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Mutação/genética
14.
Front Genet ; 12: 721045, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630515

RESUMO

Genome editing in pigs has been made efficient, practical, and economically viable by the CRISPR/Cas9 platform, representing a promising new era in translational modeling of human disease for research and preclinical development of therapies and devices. Porcine embryo microinjection provides a universally available, efficient option over somatic-cell nuclear transfer, but requires that critical considerations be made in genotypic validation of the models that routinely go unaddressed. Accurate validation of genotypes is especially important when modeling genetic disorders, such as neurofibromatosis type 1 (NF1) that exhibits complex genotype-phenotypic relationships. NF1, an autosomal dominant disorder, is particularly hard to model as it manifests very differently across patients, and even within families, with over 3,000 disease-associated mutations of the neurofibromin 1 (NF1) gene identified. The precise nature of the mutations plays a role in the complex phenotypic presentation of the disorder that includes benign and malignant peripheral and central nervous system tumors, a variety of motor deficits and debilitating cognitive impairments and musculoskeletal, cardiovascular, and gastrointestinal disorders. NF1 can also often involve mutations in passenger genes such as TP53. In this manuscript, we describe the creation of three novel porcine models of NF1 and a model additionally harboring a mutation in TP53 by embryo microinjection of CRISPR/Cas9. We present the challenges encountered in validation of genotypes and the methodological strategies developed to counter the hurdles. We present simple options for quantifying level of mosaicism: a quantitative method (targeted amplicon sequencing) for small edits such as SNPs and indels and a semiquantitative method (competitive PCR) for large edits. Characterization of mosaicism allowed for strategic selection of founder pigs for rapid, economical expansion of genetically defined lines. We also present commonly observed unexpected DNA repair products (i.e., structural variants or cryptic alleles) that are refractory to PCR amplification and thus evade detection. We present the use of copy number variance assays to overcome hurdles in detecting cryptic alleles. The report provides a framework for genotypic validation of porcine models created by embryo microinjection and the expansion of lines in an efficient manner.

15.
Epigenetics Chromatin ; 14(1): 28, 2021 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-34147133

RESUMO

BACKGROUND: With rapidly dropping sequencing cost, the popularity of whole-genome DNA methylation sequencing has been on the rise. Multiple library preparation protocols currently exist. We have performed 22 whole-genome DNA methylation sequencing experiments on snap frozen human samples, and extensively benchmarked common library preparation protocols for whole-genome DNA methylation sequencing, including three traditional bisulfite-based protocols and a new enzyme-based protocol. In addition, different input DNA quantities were compared for two kits compatible with a reduced starting quantity. In addition, we also present bioinformatic analysis pipelines for sequencing data from each of these library types. RESULTS: An assortment of metrics were collected for each kit, including raw read statistics, library quality and uniformity metrics, cytosine retention, and CpG beta value consistency between technical replicates. Overall, the NEBNext Enzymatic Methyl-seq and Swift Accel-NGS Methyl-Seq kits performed quantitatively better than the other two protocols. In addition, the NEB and Swift kits performed well at low-input amounts, validating their utility in applications where DNA is the limiting factor. RESULTS: The NEBNext Enzymatic Methyl-seq kit appeared to be the best option for whole-genome DNA methylation sequencing of high-quality DNA, closely followed by the Swift kit, which potentially works better for degraded samples. Further, a general bioinformatic pipeline is applicable across the four protocols, with the exception of extra trimming needed for the Swift Biosciences's Accel-NGS Methyl-Seq protocol to remove the Adaptase sequence.


Assuntos
Citosina , Metilação de DNA , Biblioteca Gênica , Humanos , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
16.
Am J Physiol Lung Cell Mol Physiol ; 320(6): L1147-L1157, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33851876

RESUMO

Viral infections affecting the lower respiratory tract place enormous burdens on hospitals. As neither vaccines nor antiviral agents exist for many viruses, understanding risk factors and outcomes in each patient using minimally invasive analysis, such as blood, can lead to improved health care delivery. A cohort of PAXgene RNA sequencing of infants admitted with moderate or severe acute bronchiolitis and respiratory syncytial virus were compared with case-control statistical analysis and cohort-based outlier mapping for precision transcriptomics. Patients with severe bronchiolitis had signatures connected to the immune system, interferon signaling, and cytokine signaling, with marked sex differences in XIST, RPS4Y1, KDM5D, and LINC00278 for severity. Several patients had unique secondary infections, cytokine activation, immune responses, biological pathways, and immune cell activation, highlighting the need for defining patient-level transcriptomic signatures. Balancing relative contributions of cohort-based biomarker discoveries with patient's biological responses is needed to understand the totality of mechanisms of adverse outcomes in viral bronchiolitis.


Assuntos
Bronquiolite Viral/virologia , Antígenos de Histocompatibilidade Menor/farmacologia , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Transcriptoma/efeitos dos fármacos , Bronquiolite Viral/sangue , Humanos , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Vírus Sincicial Respiratório Humano/patogenicidade , Índice de Gravidade de Doença , Transcriptoma/imunologia , Viroses/tratamento farmacológico , Viroses/virologia
17.
Epigenetics Chromatin ; 14(1): 7, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33436083

RESUMO

Benign peripheral nerve sheath tumors are the clinical hallmark of Neurofibromatosis Type 1. They account for substantial morbidity and mortality in NF1. Cutaneous (CNF) and plexiform neurofibromas (PNF) share nearly identical histology, but maintain different growth rates and risk of malignant conversion. The reasons for this disparate clinical behavior are not well explained by recent genome or transcriptome profiling studies. We hypothesized that CNFs and PNFs are epigenetically distinct tumor types that exhibit differential signaling due to genome-wide and site-specific methylation events. We interrogated the methylation profiles of 45 CNFs and 17 PNFs from NF1 subjects with the Illumina EPIC 850K methylation array. Based on these profiles, we confirm that CNFs and PNFs are epigenetically distinct tumors with broad differences in higher-order chromatin states and specific methylation events altering genes involved in key biological and cellular processes, such as inflammation, RAS/MAPK signaling, actin cytoskeleton rearrangement, and oxytocin signaling. Based on our identification of two separate DMRs associated with alternative leading exons in MAP2K3, we demonstrate differential RAS/MKK3/p38 signaling between CNFs and PNFs. Epigenetic reinforcement of RAS/MKK/p38 was a defining characteristic of CNFs leading to pro-inflammatory signaling and chromatin conformational changes, whereas PNFs signaled predominantly through RAS/MEK. Tumor size also correlated with specific CpG methylation events. Taken together, these findings confirm that NF1 deficiency influences the epigenetic regulation of RAS signaling fates, accounting for observed differences in CNF and PNF clinical behavior. The extension of these findings is that CNFs may respond differently than PNFs to RAS-targeted therapeutics raising the possibility of targeting p38-mediated inflammation for CNF treatment.


Assuntos
Neurofibroma Plexiforme , Neurofibromatose 1 , Epigênese Genética , Epigenômica , Humanos , Neurofibroma Plexiforme/genética , Neurofibromatose 1/genética , Transdução de Sinais
18.
Cell Rep ; 33(6): 108366, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33176148

RESUMO

Endometriosis affects 1 in 10 women and is characterized by the presence of abnormal endometrium at ectopic sites. ARID1A mutations are observed in deeply invasive forms of the disease, often correlating with malignancy. To identify epigenetic dependencies driving invasion, we use an unbiased approach to map chromatin state transitions accompanying ARID1A loss in the endometrium. We show that super-enhancers marked by high H3K27 acetylation are strongly associated with ARID1A binding. ARID1A loss leads to H3K27 hyperacetylation and increased chromatin accessibility and enhancer RNA transcription at super-enhancers, but not typical enhancers, indicating that ARID1A normally prevents super-enhancer hyperactivation. ARID1A co-localizes with P300 at super-enhancers, and genetic or pharmacological inhibition of P300 in ARID1A mutant endometrial epithelia suppresses invasion and induces anoikis through the rescue of super-enhancer hyperacetylation. Among hyperactivated super-enhancers, SERPINE1 (PAI-1) is identified as an essential target gene driving ARID1A mutant endometrial invasion. Broadly, our findings provide rationale for therapeutic strategies targeting super-enhancers in ARID1A mutant endometrium.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endometriose/metabolismo , Endométrio/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Animais , Endometriose/patologia , Endométrio/patologia , Feminino , Humanos , Camundongos , Mutação , Coelhos , Ratos
19.
Hum Mol Genet ; 29(20): 3412-3430, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33075803

RESUMO

Although ARID1A mutations are a hallmark feature, mutations in other SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling subunits are also observed in endometrial neoplasms. Here, we interrogated the roles of Brahma/SWI2-related gene 1 (BRG1, SMARCA4), the SWI/SNF catalytic subunit, in the endometrial epithelium. BRG1 loss affects more than one-third of all active genes and highly overlaps with the ARID1A gene regulatory network. Chromatin immunoprecipitation studies revealed widespread subunit-specific differences in transcriptional regulation, as BRG1 promoter interactions are associated with gene activation, while ARID1A binding is associated with gene repression. However, we identified a physiologically relevant subset of BRG1 and ARID1A co-regulated epithelial identity genes. Mice were genetically engineered to inactivate BRG1 specifically in the endometrial epithelium. Endometrial glands were observed embedded in uterine myometrium, indicating adenomyosis-like phenotypes. Molecular similarities were observed between BRG1 and ARID1A mutant endometrial cells in vivo, including loss of epithelial cell adhesion and junction genes. Collectively, these studies illustrate overlapping contributions of multiple SWI/SNF subunit mutations in the translocation of endometrium to distal sites, with loss of cell integrity being a common feature in SWI/SNF mutant endometrial epithelia.


Assuntos
Montagem e Desmontagem da Cromatina , DNA Helicases/fisiologia , Proteínas de Ligação a DNA/fisiologia , Endométrio/patologia , Epitélio/patologia , Regulação da Expressão Gênica , Mutação , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Animais , Endométrio/metabolismo , Epitélio/metabolismo , Feminino , Camundongos , Camundongos Knockout
20.
J Biomol Tech ; 31(3): 88-93, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32831655

RESUMO

Sanger sequencing remains an essential tool utilized by researchers. Despite competition from commercial sequencing providers, many academic sequencing core facilities continue to offer these services based on a model of competitive pricing, knowledgeable technical support, and rapid turnaround time. In-house Sanger sequencing remains a viable core service and, until recently, Applied Biosystems BigDye Terminator chemistry was the only commercially available solution for Sanger DNA sequencing on Applied Biosystems (ABI) instruments; however, several new products employing novel dye chemistries and reaction configurations have entered the market. As a result, there is a need to benchmark the performance of these new chemistries on various DNA templates, including difficult-to-sequence templates, and their amenability to commonly employed cost-saving measures, such as dye dilution and reaction miniaturization. To evaluate these new reagents, a study was designed to compare the quality of Sanger sequencing data produced by ABI BigDye and commercially available kits from 2 other vendors using both control and difficult-to-sequence DNA templates under various reaction conditions. This study will serve as a valuable resource to core facilities conducting Sanger sequencing that wish to evaluate the use of an alternative chemistry in their sequencing core.


Assuntos
Análise de Sequência de DNA/métodos , Corantes/química , DNA/genética , Moldes Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...