Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Conserv Physiol ; 10(1): coab101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35492409

RESUMO

Thermal acclimation, a compensatory physiological response, is central to species survival especially during the current era of global warming. By providing the most comprehensive assessment to date for the cardiorespiratory phenotype of rainbow trout (Oncorhynchus mykiss) at six acclimation temperatures from 15°C to 25°C, we tested the hypothesis that, compared with other strains of rainbow trout, an Australian H-strain of rainbow trout has been selectively inbred to have an unusually high and broad thermal acclimation potential. Using a field setting at the breeding hatchery in Western Australia, thermal performance curves were generated for a warm-adapted H-strain by measuring growth, feed conversion efficiency, specific dynamic action, whole-animal oxygen uptake (MO2) during normoxia and hypoxia, the critical maximum temperature and the electrocardiographic response to acute warming. Appreciable growth and aerobic capacity were possible up to 23°C. However, growth fell off drastically at 25°C in concert with increases in the time required to digest a meal, its total oxygen cost and its peak MO2. The upper thermal tipping points for appetite and food conversion efficiency corresponded with a decrease in the ability to increase heart rate during warming and an increase in the cost to digest a meal. Also, comparison of upper thermal tipping points provides compelling evidence that limitations to increasing heart rate during acute warming occurred well below the critical thermal maximum (CTmax) and that the faltering ability of the heart to deliver oxygen at different acclimation temperatures is not reliably predicted by CTmax for the H-strain of rainbow trout. We, therefore, reasoned the remarkably high thermal acclimation potential revealed here for the Australian H-strain of rainbow trout reflected the existing genetic variation within the founder Californian population, which was then subjected to selective inbreeding in association with severe heat challenges. This is an encouraging discovery for those with conservation concerns for rainbow trout and other fish species. Indeed, those trying to predict the impact of global warming should more fully consider the possibility that the standing intra-specific genetic variation within a fish species could provide a high thermal acclimation potential, similar to that shown here for rainbow trout.

2.
Curr Res Physiol ; 5: 179-183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35373148

RESUMO

Warm acclimation in fish is often characterized by an increase in heat tolerance and a reduction in physiological rates to improve the scope to respond to additional challenges including further warming. The speed of these responses can determine their effectiveness. However, acclimation rates vary across levels of biological organization and are poorly understood in part because most research is conducted after an acclimation period of >3 weeks, when acclimation is presumed to be complete. Here we show that when rainbow trout were transferred from 10 to 18 °C, over 50% of the total reduction of maximum heart rate (ƒHmax) (i.e. the thermal compensation at moderate temperatures) occurred within 72 h, with further compensation occurring more gradually over the following 25 days. Also, the ability to increase ƒHmax with acute warming improved within 24 h resulting in a 30% rise in peak ƒHmax, but this ultimately declined again with prolonged (28 days) exposure to 18 °C. In contrast with some previous studies, upper critical temperatures for ƒHmax did not increase. Nonetheless, we demonstrate that rapid cardiac plasticity is possible in rainbow trout and likely blunts the impacts of thermal variation over relatively short timescales, such as that associated with heat waves and migration between water bodies.

3.
Front Bioeng Biotechnol ; 9: 689933, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124028

RESUMO

Boron oxide nanoparticles (nB2O3) are manufactured for structural, propellant, and clinical applications and also form spontaneously through the degradation of bulk boron compounds. Bulk boron is not toxic to vertebrates but the distinctive properties of its nanostructured equivalent may alter its biocompatibility. Few studies have addressed this possibility, thus our goal was to gain an initial understanding of the potential acute toxicity of nB2O3 to freshwater fish and we used a variety of model systems to achieve this. Bioactivity was investigated in rainbow trout (Oncorhynchus mykiss) hepatocytes and at the whole animal level in three other North and South American fish species using indicators of aerobic metabolism, behavior, oxidative stress, neurotoxicity, and ionoregulation. nB2O3 reduced O. mykiss hepatocyte oxygen consumption (MO2) by 35% at high doses but whole animal MO2 was not affected in any species. Spontaneous activity was assessed using MO2 frequency distribution plots from live fish. nB2O3 increased the frequency of high MO2 events in the Amazonian fish Paracheirodon axelrodi, suggesting exposure enhanced spontaneous aerobic activity. MO2 frequency distributions were not affected in the other species examined. Liver lactate accumulation and significant changes in cardiac acetylcholinesterase and gill Na+/K+-ATPase activity were noted in the north-temperate Fundulus diaphanus exposed to nB2O3, but not in the Amazonian Apistogramma agassizii or P. axelrodi. nB2O3 did not induce oxidative stress in any of the species studied. Overall, nB2O3 exhibited modest, species-specific bioactivity but only at doses exceeding predicted environmental relevance. Chronic, low dose exposure studies are required for confirmation, but our data suggest that, like bulk boron, nB2O3 is relatively non-toxic to aquatic vertebrates and thus represents a promising formulation for further development.

4.
Nanotoxicology ; 11(8): 1070-1085, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29081249

RESUMO

The bioavailability of engineered nanomaterials should be limited in marine environments, but uptake and toxicity has been noted in marine fish and invertebrates, albeit at exposure doses far exceeding predicted environmental levels. We examined the bioactivity of amine functionalized copper nanoparticles (nCu; 5-10 nm core diameter) to the euryhaline killifish, Fundulus heteroclitus, in fresh (FW) and brackish water (BW). Free copper dissolution was undetectable in either water type and nCu remained relatively well dispersed in BW, despite the high ionic strength. Exposure to an environmentally relevant concentration of nCu (10 µg L-1) for 48 h significantly increased the maximum rate of oxygen consumption and aerobic scope in BW killifish. This effect was associated with gill remodeling which likely increased surface area and scope for oxygen uptake. In contrast, nCu exposure had no effect on oxygen consumption in FW killifish, but gill Na+/K+-ATPase activity was reduced by >40%, an effect not seen in BW. Osmotic and ionic homeostasis were protected and no indications of physiological or oxidative stress were observed in either FW and BW exposure groups. The results show that functionalized nCu formulations can exhibit bioactivity in both FW and BW and that the underlying mechanisms are different between water types.


Assuntos
Cobre/toxicidade , Água Doce/química , Fundulidae/fisiologia , Nanopartículas/toxicidade , Água do Mar/química , Poluentes Químicos da Água/toxicidade , Aminas/química , Animais , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Brânquias/patologia , Concentração Osmolar , Estresse Oxidativo/efeitos dos fármacos , Consumo de Oxigênio , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA