Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1304: 342470, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637058

RESUMO

BACKGROUND: Iridium(III) complexes, exhibiting high luminescence quantum yields and a wide range of emission colours, are promising alternatives to tris(2,2'-bipyridine)ruthenium(II) for chemiluminescence (CL) and electrochemiluminescence (ECL) detection. This emerging class of reagent, however, is limited by the poor solubility of many iridium(III) complexes in aqueous solution, and lack of understanding of their remarkably variable selectivities towards different analytes. RESULTS: Seven [Ir(C^N)2(pt-TEG)]+ complexes, exhibiting a wide range of reduction potentials and emission energies, were examined with six model analytes. For CL, cerium(IV) was used as the oxidant. The alkylamine analytes generally produced greater CL and ECL with the more readily oxidised Ir(III) complexes (C^N = piq, bt, ppy), predominantly through the 'direct' pathway requiring oxidation of both metal complex and analyte. Aniline derivatives that did not also contain secondary or tertiary alkylamines elicited CL from the less readily oxidised complexes (C^N = df-ppy-CF3, df-ppy) via energy transfer. The most difficult to oxidise complexes (C^N = df(CF3)-ppy-Me, df(CN)-ppy) gave poor responses due to the limited potential window of the solvent and inefficiency of energy transfer to their high energy excited states. Greater CL and/or ECL intensities were generally obtained for each analyte with at least one Ir(III) complex than with [Ru(bpy)3]2+; superior limits of detection for two analytes were demonstrated. SIGNIFICANCE: This exploration of CL/ECL in which the properties of luminophore, analyte and oxidant are all varied provides a new understanding of the influence of the metal-complex potentials and excited state energy on the light-producing and quenching pathways, and consequently, their distinct selectivity towards different analytes. These findings will guide the development of water-soluble Ir(III) complexes as CL and ECL reagents.

2.
Chem Sci ; 12(28): 9770-9777, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34349950

RESUMO

We present a new approach to explore the potential-dependent multi-colour co-reactant electrochemiluminescence (ECL) from multiple luminophores. The potentials at both the working and counter electrodes, the current between these electrodes, and the emission over cyclic voltammetric scans were simultaneously measured for the ECL reaction of Ir(ppy)3 and either [Ru(bpy)3]2+ or [Ir(df-ppy)2(ptb)]+, with tri-n-propylamine as the co-reactant. The counter electrode potential was monitored by adding a differential electrometer module to the potentiostat. Plotting the data against the applied working electrode potential and against time provided complementary depictions of their relationships. Photographs of the ECL at the surface of the two electrodes were taken to confirm the source of the emissions. This provided a new understanding of these multifaceted ECL systems, including the nature of the counter electrode potential and the possibility of eliciting ECL at this electrode, a mechanism-based rationalisation of the interactions of different metal-complex luminophores, and a previously unknown ECL pathway for the Ir(ppy)3 complex at negative potentials that was observed even in the absence of the co-reactant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...