Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36081058

RESUMO

Stair climb power (SCP) is a clinical measure of leg muscular function assessed in-clinic via the Stair Climb Power Test (SCPT). This method is subject to human error and cannot provide continuous remote monitoring. Continuous monitoring using wearable sensors may provide a more comprehensive assessment of lower-limb muscular function. In this work, we propose an algorithm to classify stair climbing periods and estimate SCP from a lower-back worn accelerometer, which strongly agrees with the clinical standard (r = 0.92, p < 0.001; ICC = 0.90, [0.82, 0.94]). Data were collected in-lab from healthy adults (n = 65) performing the four-step SCPT and a walking assessment while instrumented (accelerometer + gyroscope), which allowed us to investigate tradeoffs between sensor modalities. Using two classifiers, we were able to identify periods of stair ascent with >89% accuracy [sensitivity = >0.89, specificity = >0.90] using two ensemble machine learning algorithms, trained on accelerometer signal features. Minimal changes in model performances were observed using the gyroscope alone (±0−6% accuracy) versus the accelerometer model. While we observed a slight increase in accuracy when combining gyroscope and accelerometer (about +3−6% accuracy), this is tolerable to preserve battery life in the at-home environment. This work is impactful as it shows potential for an accelerometer-based at-home assessment of SCP.


Assuntos
Teste de Esforço , Dispositivos Eletrônicos Vestíveis , Adulto , Algoritmos , Humanos , Extremidade Inferior , Músculo Esquelético , Caminhada
2.
JMIR Mhealth Uhealth ; 10(4): e36762, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35353039

RESUMO

Wearable inertial sensors are providing enhanced insight into patient mobility and health. Significant research efforts have focused on wearable algorithm design and deployment in both research and clinical settings; however, open-source, general-purpose software tools for processing various activities of daily living are relatively scarce. Furthermore, few studies include code for replication or off-the-shelf software packages. In this work, we introduce SciKit Digital Health (SKDH), a Python software package (Python Software Foundation) containing various algorithms for deriving clinical features of gait, sit to stand, physical activity, and sleep, wrapped in an easily extensible framework. SKDH combines data ingestion, preprocessing, and data analysis methods geared toward modern data science workflows and streamlines the generation of digital endpoints in "good practice" environments by combining all the necessary data processing steps in a single pipeline. Our package simplifies the construction of new data processing pipelines and promotes reproducibility by following a convention over configuration approach, standardizing most settings on physiologically reasonable defaults in healthy adult populations or those with mild impairment. SKDH is open source, as well as free to use and extend under a permissive Massachusetts Institute of Technology license, and is available from GitHub (PfizerRD/scikit-digital-health), the Python Package Index, and the conda-forge channel of Anaconda.


Assuntos
Atividades Cotidianas , Dispositivos Eletrônicos Vestíveis , Adulto , Algoritmos , Humanos , Reprodutibilidade dos Testes , Software
3.
NPJ Digit Med ; 3: 127, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083562

RESUMO

Technological advances in multimodal wearable and connected devices have enabled the measurement of human movement and physiology in naturalistic settings. The ability to collect continuous activity monitoring data with digital devices in real-world environments has opened unprecedented opportunity to establish clinical digital phenotypes across diseases. Many traditional assessments of physical function utilized in clinical trials are limited because they are episodic, therefore, cannot capture the day-to-day temporal fluctuations and longitudinal changes in activity that individuals experience. In order to understand the sensitivity of gait speed as a potential endpoint for clinical trials, we investigated the use of digital devices during traditional clinical assessments and in real-world environments in a group of healthy younger (n = 33, 18-40 years) and older (n = 32, 65-85 years) adults. We observed good agreement between gait speed estimated using a lumbar-mounted accelerometer and gold standard system during the performance of traditional gait assessment task in-lab, and saw discrepancies between in-lab and at-home gait speed. We found that gait speed estimated in-lab, with or without digital devices, failed to differentiate between the age groups, whereas gait speed derived during at-home monitoring was able to distinguish the age groups. Furthermore, we found that only three days of at-home monitoring was sufficient to reliably estimate gait speed in our population, and still capture age-related group differences. Our results suggest that gait speed derived from activities during daily life using data from wearable devices may have the potential to transform clinical trials by non-invasively and unobtrusively providing a more objective and naturalistic measure of functional ability.

4.
JMIR Med Inform ; 2(1): e5, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25601137

RESUMO

BACKGROUND: Structured information within patient medical records represents a largely untapped treasure trove of research data. In the United States, privacy issues notwithstanding, this has recently become more accessible thanks to the increasing adoption of electronic health records (EHR) and health care data standards fueled by the Meaningful Use legislation. The other side of the coin is that it is now becoming increasingly more difficult to navigate the profusion of many disparate clinical terminology standards, which often span millions of concepts. OBJECTIVE: The objective of our study was to develop a methodology for integrating large amounts of structured clinical information that is both terminology agnostic and able to capture heterogeneous clinical phenotypes including problems, procedures, medications, and clinical results (such as laboratory tests and clinical observations). In this context, we define phenotyping as the extraction of all clinically relevant features contained in the EHR. METHODS: The scope of the project was framed by the Common Meaningful Use (MU) Dataset terminology standards; the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), RxNorm, the Logical Observation Identifiers Names and Codes (LOINC), the Current Procedural Terminology (CPT), the Health care Common Procedure Coding System (HCPCS), the International Classification of Diseases Ninth Revision Clinical Modification (ICD-9-CM), and the International Classification of Diseases Tenth Revision Clinical Modification (ICD-10-CM). The Unified Medical Language System (UMLS) was used as a mapping layer among the MU ontologies. An extract, load, and transform approach separated original annotations in the EHR from the mapping process and allowed for continuous updates as the terminologies were updated. Additionally, we integrated all terminologies into a single UMLS derived ontology and further optimized it to make the relatively large concept graph manageable. RESULTS: The initial evaluation was performed with simulated data from the Clinical Avatars project using 100,000 virtual patients undergoing a 90 day, genotype guided, warfarin dosing protocol. This dataset was annotated with standard MU terminologies, loaded, and transformed using the UMLS. We have deployed this methodology to scale in our in-house analytics platform using structured EHR data for 7931 patients (12 million clinical observations) treated at the Froedtert Hospital. A demonstration limited to Clinical Avatars data is available on the Internet using the credentials user "jmirdemo" and password "jmirdemo". CONCLUSIONS: Despite its inherent complexity, the UMLS can serve as an effective interface terminology for many of the clinical data standards currently used in the health care domain.

5.
Artigo em Inglês | MEDLINE | ID: mdl-25717392

RESUMO

BACKGROUND: Pancreatic cancer is one of the most common causes of cancer-related deaths in the United States, it is difficult to detect early and typically has a very poor prognosis. We present a novel method of large-scale clinical hypothesis generation based on phenome wide association study performed using Electronic Health Records (EHR) in a pancreatic cancer cohort. METHODS: The study population consisted of 1,154 patients diagnosed with malignant neoplasm of pancreas seen at The Froedtert & The Medical College of Wisconsin academic medical center between the years 2004 and 2013. We evaluated death of a patient as the primary clinical outcome and tested its association with the phenome, which consisted of over 2.5 million structured clinical observations extracted out of the EHR including labs, medications, phenotypes, diseases and procedures. The individual observations were encoded in the EHR using 6,617 unique ICD-9, CPT-4, LOINC, and RxNorm codes. We remapped this initial code set into UMLS concepts and then hierarchically expanded to support generalization into the final set of 10,164 clinical concepts, which formed the final phenome. We then tested all possible pairwise associations between any of the original 10,164 concepts and death as the primary outcome. RESULTS: After correcting for multiple testing and folding back (generalizing) child concepts were appropriate, we found 231 concepts to be significantly associated with death in the study population. CONCLUSIONS: With the abundance of structured EHR data, phenome wide association studies combined with knowledge engineering can be a viable method of rapid hypothesis generation.

6.
BMC Bioinformatics ; 13: 254, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23031277

RESUMO

BACKGROUND: Sharing of data about variation and the associated phenotypes is a critical need, yet variant information can be arbitrarily complex, making a single standard vocabulary elusive and re-formatting difficult. Complex standards have proven too time-consuming to implement. RESULTS: The GEN2PHEN project addressed these difficulties by developing a comprehensive data model for capturing biomedical observations, Observ-OM, and building the VarioML format around it. VarioML pairs a simplified open specification for describing variants, with a toolkit for adapting the specification into one's own research workflow. Straightforward variant data can be captured, federated, and exchanged with no overhead; more complex data can be described, without loss of compatibility. The open specification enables push-button submission to gene variant databases (LSDBs) e.g., the Leiden Open Variation Database, using the Cafe Variome data publishing service, while VarioML bidirectionally transforms data between XML and web-application code formats, opening up new possibilities for open source web applications building on shared data. A Java implementation toolkit makes VarioML easily integrated into biomedical applications. VarioML is designed primarily for LSDB data submission and transfer scenarios, but can also be used as a standard variation data format for JSON and XML document databases and user interface components. CONCLUSIONS: VarioML is a set of tools and practices improving the availability, quality, and comprehensibility of human variation information. It enables researchers, diagnostic laboratories, and clinics to share that information with ease, clarity, and without ambiguity.


Assuntos
Bases de Dados Genéticas , Doença/genética , Variação Genética , Disseminação de Informação/métodos , Sistemas Computacionais , Humanos
7.
J Biomed Inform ; 45(4): 782-94, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22449719

RESUMO

Sharing and describing experimental results unambiguously with sufficient detail to enable replication of results is a fundamental tenet of scientific research. In today's cluttered world of "-omics" sciences, data standards and standardized use of terminologies and ontologies for biomedical informatics play an important role in reporting high-throughput experiment results in formats that can be interpreted by both researchers and analytical tools. Increasing adoption of Semantic Web and Linked Data technologies for the integration of heterogeneous and distributed health care and life sciences (HCLSs) datasets has made the reuse of standards even more pressing; dynamic semantic query federation can be used for integrative bioinformatics when ontologies and identifiers are reused across data instances. We present here a methodology to integrate the results and experimental context of three different representations of microarray-based transcriptomic experiments: the Gene Expression Atlas, the W3C BioRDF task force approach to reporting Provenance of Microarray Experiments, and the HSCI blood genomics project. Our approach does not attempt to improve the expressivity of existing standards for genomics but, instead, to enable integration of existing datasets published from microarray-based transcriptomic experiments. SPARQL Construct is used to create a posteriori mappings of concepts and properties and linking rules that match entities based on query constraints. We discuss how our integrative approach can encourage reuse of the Experimental Factor Ontology (EFO) and the Ontology for Biomedical Investigations (OBIs) for the reporting of experimental context and results of gene expression studies.


Assuntos
Perfilação da Expressão Gênica/métodos , Internet , Aplicações da Informática Médica , Semântica , Bases de Dados Genéticas , Genômica , Humanos , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Farmacogenética
8.
Hum Mutat ; 33(5): 867-73, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22416047

RESUMO

Genetic and epidemiological research increasingly employs large collections of phenotypic and molecular observation data from high quality human and model organism samples. Standardization efforts have produced a few simple formats for exchange of these various data, but a lightweight and convenient data representation scheme for all data modalities does not exist, hindering successful data integration, such as assignment of mouse models to orphan diseases and phenotypic clustering for pathways. We report a unified system to integrate and compare observation data across experimental projects, disease databases, and clinical biobanks. The core object model (Observ-OM) comprises only four basic concepts to represent any kind of observation: Targets, Features, Protocols (and their Applications), and Values. An easy-to-use file format (Observ-TAB) employs Excel to represent individual and aggregate data in straightforward spreadsheets. The systems have been tested successfully on human biobank, genome-wide association studies, quantitative trait loci, model organism, and patient registry data using the MOLGENIS platform to quickly setup custom data portals. Our system will dramatically lower the barrier for future data sharing and facilitate integrated search across panels and species. All models, formats, documentation, and software are available for free and open source (LGPLv3) at http://www.observ-om.org.


Assuntos
Disseminação de Informação/métodos , Gestão da Informação , Animais , Gráficos por Computador , Bases de Dados Genéticas , Epidermólise Bolhosa Distrófica/genética , Estudos de Associação Genética , Humanos , Informática Médica , Camundongos , Fenótipo , Locos de Características Quantitativas
9.
Nucleic Acids Res ; 40(Database issue): D1077-81, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22064864

RESUMO

Gene Expression Atlas (http://www.ebi.ac.uk/gxa) is an added-value database providing information about gene expression in different cell types, organism parts, developmental stages, disease states, sample treatments and other biological/experimental conditions. The content of this database derives from curation, re-annotation and statistical analysis of selected data from the ArrayExpress Archive and the European Nucleotide Archive. A simple interface allows the user to query for differential gene expression either by gene names or attributes or by biological conditions, e.g. diseases, organism parts or cell types. Since our previous report we made 20 monthly releases and, as of Release 11.08 (August 2011), the database supports 19 species, which contains expression data measured for 19,014 biological conditions in 136,551 assays from 5598 independent studies.


Assuntos
Bases de Dados Genéticas , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Atlas como Assunto , Genômica , Humanos , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Análise de Sequência de RNA , Interface Usuário-Computador
10.
AMIA Annu Symp Proc ; 2012: 1099-108, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23304386

RESUMO

OBJECTIVE: To assess whether errors can be found in LOINC by changing its representation to OWL DL and comparing its classification to that of SNOMED CT. METHODS: We created Description Logic definitions for LOINC concepts in OWL and merged the ontology with SNOMED CT to enrich the relatively flat hierarchy of LOINC parts. LOINC - SNOMED CT mappings were acquired through UMLS. The resulting ontology was classified with the ConDOR reasoner. RESULTS: Transformation into DL helped to identify 427 sets of logically equivalent LOINC codes, 676 sets of logically equivalent LOINC parts, and 239 inconsistencies in LOINC multiaxial hierarchy. Automatic classification of LOINC and SNOMED CT combined increased the connectivity within LOINC hierarchy and increased its coverage by an additional 9,006 LOINC codes. CONCLUSIONS: LOINC is a well-maintained terminology. While only a relatively small number of logical inconsistencies were found, we identified a number of areas where LOINC could benefit from the application of Description Logic.


Assuntos
Logical Observation Identifiers Names and Codes , Linguagens de Programação , Controle de Qualidade , Systematized Nomenclature of Medicine , Unified Medical Language System
11.
J Biomed Semantics ; 2 Suppl 4: S3, 2011 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-21995944

RESUMO

MOTIVATION: To evaluate how well current anatomical ontologies fit the way real-world users apply anatomy terms in their data annotations. METHODS: Annotations from three diverse multi-species public-domain datasets provided a set of use cases for matching anatomical terms in two major anatomical ontologies (the Foundational Model of Anatomy and Uberon), using two lexical-matching applications (Zooma and Ontology Mapper). RESULTS: Approximately 1500 terms were identified; Uberon/Zooma mappings provided 286 matches, compared to the control and Ontology Mapper returned 319 matches. For the Foundational Model of Anatomy, Zooma returned 312 matches, and Ontology Mapper returned 397. CONCLUSIONS: Our results indicate that for our datasets the anatomical entities or concepts are embedded in user-generated complex terms, and while lexical mapping works, anatomy ontologies do not provide the majority of terms users supply when annotating data. Provision of searchable cross-products for compositional terms is a key requirement for using ontologies.

12.
Bioinformatics ; 27(17): 2468-70, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21697126

RESUMO

MOTIVATION: There exist few simple and easily accessible methods to integrate ontologies programmatically in the R environment. We present ontoCAT-an R package to access ontologies in widely used standard formats, stored locally in the filesystem or available online. The ontoCAT package supports a number of traversal and search functions on a single ontology, as well as searching for ontology terms across multiple ontologies and in major ontology repositories. AVAILABILITY: The package and sources are freely available in Bioconductor starting from version 2.8: http://bioconductor.org/help/bioc-views/release/bioc/html/ontoCAT.html or via the OntoCAT website http://www.ontocat.org/wiki/r. CONTACT: natalja@ebi.ac.uk; natalja@ebi.ac.uk.


Assuntos
Software , Vocabulário Controlado , Terminologia como Assunto
13.
BMC Bioinformatics ; 12: 218, 2011 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-21619703

RESUMO

BACKGROUND: Ontologies have become an essential asset in the bioinformatics toolbox and a number of ontology access resources are now available, for example, the EBI Ontology Lookup Service (OLS) and the NCBO BioPortal. However, these resources differ substantially in mode, ease of access, and ontology content. This makes it relatively difficult to access each ontology source separately, map their contents to research data, and much of this effort is being replicated across different research groups. RESULTS: OntoCAT provides a seamless programming interface to query heterogeneous ontology resources including OLS and BioPortal, as well as user-specified local OWL and OBO files. Each resource is wrapped behind easy to learn Java, Bioconductor/R and REST web service commands enabling reuse and integration of ontology software efforts despite variation in technologies. It is also available as a stand-alone MOLGENIS database and a Google App Engine application. CONCLUSIONS: OntoCAT provides a robust, configurable solution for accessing ontology terms specified locally and from remote services, is available as a stand-alone tool and has been tested thoroughly in the ArrayExpress, MOLGENIS, EFO and Gen2Phen phenotype use cases. AVAILABILITY: http://www.ontocat.org.


Assuntos
Biologia Computacional/métodos , Software , Vocabulário , Bases de Dados Factuais , Humanos , Linguagens de Programação , Interface Usuário-Computador , Vocabulário Controlado
14.
Nucleic Acids Res ; 39(Database issue): D1002-4, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21071405

RESUMO

The ArrayExpress Archive (http://www.ebi.ac.uk/arrayexpress) is one of the three international public repositories of functional genomics data supporting publications. It includes data generated by sequencing or array-based technologies. Data are submitted by users and imported directly from the NCBI Gene Expression Omnibus. The ArrayExpress Archive is closely integrated with the Gene Expression Atlas and the sequence databases at the European Bioinformatics Institute. Advanced queries provided via ontology enabled interfaces include queries based on technology and sample attributes such as disease, cell types and anatomy.


Assuntos
Bases de Dados Genéticas , Perfilação da Expressão Gênica , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência com Séries de Oligonucleotídeos , Expressão Gênica
15.
Bioinformatics ; 26(8): 1112-8, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20200009

RESUMO

MOTIVATION: Describing biological sample variables with ontologies is complex due to the cross-domain nature of experiments. Ontologies provide annotation solutions; however, for cross-domain investigations, multiple ontologies are needed to represent the data. These are subject to rapid change, are often not interoperable and present complexities that are a barrier to biological resource users. RESULTS: We present the Experimental Factor Ontology, designed to meet cross-domain, application focused use cases for gene expression data. We describe our methodology and open source tools used to create the ontology. These include tools for creating ontology mappings, ontology views, detecting ontology changes and using ontologies in interfaces to enhance querying. The application of reference ontologies to data is a key problem, and this work presents guidelines on how community ontologies can be presented in an application ontology in a data-driven way. AVAILABILITY: http://www.ebi.ac.uk/efo.


Assuntos
Biologia Computacional/métodos , Algoritmos , Bases de Dados Factuais , Perfilação da Expressão Gênica/métodos
16.
BMC Bioinformatics ; 11 Suppl 12: S12, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21210979

RESUMO

BACKGROUND: There is a huge demand on bioinformaticians to provide their biologists with user friendly and scalable software infrastructures to capture, exchange, and exploit the unprecedented amounts of new *omics data. We here present MOLGENIS, a generic, open source, software toolkit to quickly produce the bespoke MOLecular GENetics Information Systems needed. METHODS: The MOLGENIS toolkit provides bioinformaticians with a simple language to model biological data structures and user interfaces. At the push of a button, MOLGENIS' generator suite automatically translates these models into a feature-rich, ready-to-use web application including database, user interfaces, exchange formats, and scriptable interfaces. Each generator is a template of SQL, JAVA, R, or HTML code that would require much effort to write by hand. This 'model-driven' method ensures reuse of best practices and improves quality because the modeling language and generators are shared between all MOLGENIS applications, so that errors are found quickly and improvements are shared easily by a re-generation. A plug-in mechanism ensures that both the generator suite and generated product can be customized just as much as hand-written software. RESULTS: In recent years we have successfully evaluated the MOLGENIS toolkit for the rapid prototyping of many types of biomedical applications, including next-generation sequencing, GWAS, QTL, proteomics and biobanking. Writing 500 lines of model XML typically replaces 15,000 lines of hand-written programming code, which allows for quick adaptation if the information system is not yet to the biologist's satisfaction. Each application generated with MOLGENIS comes with an optimized database back-end, user interfaces for biologists to manage and exploit their data, programming interfaces for bioinformaticians to script analysis tools in R, Java, SOAP, REST/JSON and RDF, a tab-delimited file format to ease upload and exchange of data, and detailed technical documentation. Existing databases can be quickly enhanced with MOLGENIS generated interfaces using the 'ExtractModel' procedure. CONCLUSIONS: The MOLGENIS toolkit provides bioinformaticians with a simple model to quickly generate flexible web platforms for all possible genomic, molecular and phenotypic experiments with a richness of interfaces not provided by other tools. All the software and manuals are available free as LGPLv3 open source at http://www.molgenis.org.


Assuntos
Biologia Computacional/métodos , Software , Bases de Dados Genéticas , Genômica , Sistemas de Informação , Internet , Fenótipo , Interface Usuário-Computador
17.
Nucleic Acids Res ; 37(Database issue): D868-72, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19015125

RESUMO

ArrayExpress http://www.ebi.ac.uk/arrayexpress consists of three components: the ArrayExpress Repository--a public archive of functional genomics experiments and supporting data, the ArrayExpress Warehouse--a database of gene expression profiles and other bio-measurements and the ArrayExpress Atlas--a new summary database and meta-analytical tool of ranked gene expression across multiple experiments and different biological conditions. The Repository contains data from over 6000 experiments comprising approximately 200,000 assays, and the database doubles in size every 15 months. The majority of the data are array based, but other data types are included, most recently-ultra high-throughput sequencing transcriptomics and epigenetic data. The Warehouse and Atlas allow users to query for differentially expressed genes by gene names and properties, experimental conditions and sample properties, or a combination of both. In this update, we describe the ArrayExpress developments over the last two years.


Assuntos
Bases de Dados Genéticas , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...