Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38534487

RESUMO

The present in vitro study focuses on the filling ability of three different bioceramic cements with or without the addition of a bioceramic sealer in an open apex model on the marginal apical adaptation, tubule infiltrations, and void distributions as well as the interface between the cement and the sealer materials. To this end, sixty mandibular premolars were used. MTA-Biorep (BR), Biodentine (BD), and Well-Root Putty (WR) were used to obturate the open apex model with or without the addition of a bioceramic sealer, namely TotalFill® BC sealer™ (TF). A digital optical microscope and scanning electron microscope (SEM) were used to investigate the cement-dentin interface, marginal apical adaptation, and the material infiltration into the dentinal tubules. Micro-computed X-ray tomography and digital optical microscopy were used to investigate the cement-sealer interface. The results were analyzed by using the Kruskal-Wallis test. No significant difference was found between the groups for the marginal apical adaptation quality (p > 0.05). Good adaptation of the dentin-cement interface was found for all tested groups and the sealer was placed between the cement material and dentinal walls. All the groups demonstrated some infiltrations into the dentinal tubules at the coronal part except for the BR group. A good internal interface was found between the cement and the sealer with the presence of voids at the external interface. A larger number of voids were found in the case of the BD-TF group compared to each of the other two groups (p < 0.05). Within the limitations of the present in vitro study, all the groups demonstrated good marginal apical adaptation. The use of a sealer in an open apex does not guarantee good filling and, in addition, creates voids at the external interfaces with the dental walls when the premixed sealer is used with powder-liquid cement systems. The use of a premixed bioceramic cement could offer fewer complications than when a powder-liquid cement system is used.

2.
Materials (Basel) ; 16(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37109947

RESUMO

The aim of the present study was to investigate the influence of the mechanical properties of three different calcium-silicate-based cements on the stress distribution of three different retrograde cavity preparations. Biodentine™ "BD", MTA Biorep "BR", and Well-Root™ PT "WR" were used. The compression strengths of ten cylindrical samples of each material were tested. The porosity of each cement was investigated by using micro-computed X-ray tomography. Finite element analysis (FEA) was used to simulate three retrograde conical cavity preparations with an apical diameter of 1 mm (Tip I), 1.4 mm (Tip II), and 1.8 mm (Tip III) after an apical 3 mm resection. BR demonstrated the lowest compression strength values (17.6 ± 5.5 MPa) and porosity percentages (0.57 ± 0.14%) compared to BD (80 ± 17 MPa-1.22 ± 0.31%) and WR (90 ± 22 MPa-1.93 ± 0.12%) (p < 0.05). FEA demonstrated that the larger cavity preparation demonstrated higher stress distribution in the root whereas stiffer cement demonstrated lower stress in the root but higher stress in the material. We can conclude that a respected root end preparation associated with cement with good stiffness could offer optimal endodontic microsurgery. Further studies are needed to define the adapted cavity diameter and cement stiffness in order to have optimal mechanical resistance with less stress distribution in the root.

3.
J Clin Med ; 11(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36431231

RESUMO

The aim of this in vitro study was to investigate the compressive strength and the bulk porosity of a bidirectional (bFRC) and an experimental bidirectional spiral winding reinforced fiber composite (bswFRC). Cylindrical-shape specimens were prepared for each material group and processed for the evaluation of compressive strength after different storage conditions (dry, 1 and 3 months) in distilled water at 37 °C. The specimens were also assessed for the degree of bulk porosity through X-ray tomography. A scanning electron microscope (SEM) was used to determine the fracture mode after a compressive strength test. Data were statistically analyzed using Two-Way Analysis of Variance (ANOVA). A significantly lower compressive strength was obtained in dry conditions, and after 1 month of water immersion, with the specimens created with bFRC compared to those made with bswFRC (p < 0.05). No significant difference (p > 0.05) was found between the two groups after 3 months of water immersion. However, the presence of water jeopardized significantly the compressive strength of bswFRC after water storage. The type of fracture was clearly different between the two groups; bswFRC showed a brutal fracture, whilst bFRC demonstrated a shear fracture. The bswFRC demonstrated higher pore volume density than bFRC. In conclusion, bswFRC is characterized by greater compressive strength compared to bFRC in dry conditions, but water-aging can significantly decrease the mechanical properties of such an innovative FRC. Therefore, both the novel bidirectional spiral winding reinforced fiber composites (bswFRC) and the bidirectional fiber reinforced composites (bFRC) might represent suitable materials for the production of post-and-core systems via CAD/CAM technology. These findings suggest that both FRC materials have the potential to strengthen the endodontically treated teeth.

4.
Bioengineering (Basel) ; 9(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35324774

RESUMO

This study aimed at evaluating the physicochemical and biological properties of experimental epoxy-resin sealers containing polyphenols such as resveratrol and pyrogallol. A conventional epoxy resin (OB) was modified by adding different concentrations of resveratrol (RS) or pyrogallol (PY) to its composition. Antibacterial and antioxidant activities, mechanical properties, along with wettability and morphological changes were investigated. The results were statistically analyzed using ANOVA and multiple comparison tests (α = 0.05). The incorporation of the tested polyphenols into the epoxy resin enhanced its mechanical properties. PY demonstrated much better antioxidant and antibacterial activities than RS, which were associated with a higher release of PY. In contrast, PY showed a higher cytotoxicity than OB and OB doped with RS. OB containing PY presented a rougher surface and higher water absorption than OB doped with RS. Both tested polyphenols caused no notable changes to the overall porosity of OB. Resveratrol and pyrogallol may not only influence the morphology and mechanical properties of epoxy-resin sealers, but could also enhance antioxidant activity and antibacterial effects against Enterococcus faecalis. Most epoxy-resin sealers currently available in the market can be considered as "passive" materials. Thus, doping their composition with specific polyphenols may be a suitable strategy to confer some antibacterial properties, antioxidant potential, along with improvement of some mechanical properties.

5.
MRS Bull ; 47(12): 1185-1197, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36846500

RESUMO

Abstract: Poly(dimethylsiloxane) (PDMS)-based nanocomposites have attracted increasing attention due to their inherent outstanding properties. Nevertheless, the realization of high levels of dispersion of nanosilicas in PDMS represents a challenge arising from the poor compatibility between the two components. Herein, we explore the use of ionic interactions located at the interface between silica and a PDMS matrix by combining anionic sulfonate-functionalized silica and cationic ammonium-functionalized PDMS. A library of ionic PDMS nanocomposites was synthesized and characterized to highlight the impact of charge location, density, and molecular weight of ionic PDMS polymers on the dispersion of nanosilicas and the resulting mechanical reinforcement. The use of reversible ionic interactions at the interface of nanoparticles-polymer matrix enables the healing of scratches applied to the surface of the nanocomposites. Molecular dynamics simulations were used to estimate the survival probability of ionic cross-links between nanoparticles and the polymer matrix, revealing a dependence on polymer charge density. Impact statement: Poly(dimethylsiloxane) (PDMS) has been widely used in diverse applications due to its inherent attractive and multifunctional properties including optical transparency, high flexibility, and biocompatibility. The combination of such properties in a single polymer matrix has paved the way toward a wide range of applications in sensors, electronics, and biomedical devices. As a liquid at room temperature, the cross-linking of the PDMS turns the system into a mechanically stable elastomer for several applications. Nanofillers have served as a reinforcing agent to design PDMS nanocomposites. However, due to significant incompatibility between silica and the PDMS matrix, the dispersion of nanosilica fillers has been challenging. One of the existing strategies to improve nanoparticle dispersion consists of grafting oppositely charged ionic functional groups to the nanoparticle surface and the polymer matrix, respectively, creating nanoparticle ionic materials. Here, this approach has been explored further to improve the dispersion of nanosilicas in a PDMS matrix. The designed ionic PDMS nanocomposites exhibit self-healing properties due to the reversible nature of ionic interactions. The developed synthetic approach can be transferred to other kinds of inorganic nanoparticles dispersed in a PDMS matrix, where dispersion at the nanometer scale is a prerequisite for specific applications such as encapsulants for light-emitting diodes (LEDs). Supplementary information: The online version contains supplementary material available at 10.1557/s43577-022-00346-x.

6.
J Funct Biomater ; 14(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36662056

RESUMO

The aim of the present in vitro study was to evaluate specific mechanical and physicochemical properties of two calcium silicate based sealers, (AH Plus Bioceramic "AHPB"; Well-Root ST "WRST"), and a conventional resin sealer (AH Plus "AHP"). These aims were accomplished by assessing the porosity, pH, compression strength, roughness, wettability and cell attachment of the tested materials. The results were compared statistically using the one-way ANOVA test. Higher pH values were obtained in both AHPB and WRST compared to AHP at 3, 24 and 72 h (p < 0.05). A greater level of porosity and wettability was detected for both AHPB and WRST compared to the resin sealer AHP (p < 0.05). Evident cell growth characterized by elongated morphology was observed on the surface of AHPB and WRST, while only a thin layer of cells was seen on the surface of AHP. A significant lower compression strength and modulus were obtained in the specimens created using AHPB compared to those made with AHP and WRST (p < 0.05). The removal of calcium silicates may be quite tricky during endodontic retreatment. In conclusion, considering the limitations of the present in vitro study, both calcium silicate sealers demonstrated good physicochemical properties. However, the lower compression strength and modulus of AHPB may facilitate its removal and make the retreatment procedures considerably easier.

7.
Polymers (Basel) ; 13(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34960824

RESUMO

Additive manufacturing technologies such as fused filament fabrication (FFF) open many possibilities in terms of product functionality, including the possibility to integrate a sensor in FFF parts to perform structural health monitoring. In this context, embedding fiber Bragg grating (FBG) sensors into 3D-printed polymeric structures for strain or temperature measurements has attracted increasing attention in recent years. Indeed, offering structural health monitoring functionality can optimize the maintenance cost and increase security compared with conventional materials. However, the transmission of strain and temperature between the polymeric matrix and the FBG polymer jacket requires optimal bonding between them. In this work, the two polymers of interest are polyimide (PI) and poly(lactic acid) (PLA) for the FBG jacket and printed polymer, respectively. The current study investigates the influence of different surface treatment methods on the adhesion between a PI film and a plate of PLA, with PLA and PI being incompatible polymers. The adhesion promotion applied to the PI surface relies on cleaning, plasma activation, roughness modification, or the use of adhesive nanocoating. Bilayer samples of PI-PLA are processed by welding PLA against the treated PI by heating, whereas the adhesion between PI and PLA is measured by peel testing. It is observed that the highest adhesion between PI and PLA is achieved by a combination of mechanical abrasion increasing roughness and the use of polydopamine as an adhesive. This finding is discussed based on a synergetic effect between mechanical interlocking and chemical interaction between the two counterfaces.

8.
Polymers (Basel) ; 13(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34577995

RESUMO

This work aimed at studying the effect of a silica specific surface area (SSA), as determined by the nitrogen adsorption method, on the viscoelastic and fatigue behaviors of silica-filled styrene-butadiene rubber (SBR) composites. In particular, silica fillers with an SSA of 125 m2/g, 165 m2/g, and 200 m2/g were selected. Micro-computed X-ray tomography (µCT) was utilized to analyze the 3D morphology of the fillers within an SBR matrix prior to mechanical testing. It was found with this technique that the volume density of the agglomerates drastically decreased with decreasing silica SSA, indicating an increase in the silica dispersion state. The viscoelastic behavior was evaluated by dynamic mechanical analysis (DMA) and hysteresis loss experiments. The fatigue behavior was studied by cyclic tensile loading until rupture enabled the generation of Wöhler curves. Digital image correlation (DIC) was used to evaluate the volume strain upon deformation, whereas µCT was used to evaluate the volume fraction of the fatigue-induced cracks. Last, scanning electron microscopy (SEM) was used to characterize, in detail, crack mechanisms. The main results indicate that fatigue life increased with decreasing silica SSA, which was also accompanied by a decrease in hysteresis loss and storage modulus. SEM investigations showed that filler-matrix debonding and filler fracture were the mechanisms at the origin of crack initiation. Both the volume fraction of the cracks obtained by µCT and the volume strain acquired from the DIC increased with increasing SSA of silica. The results are discussed based on the prominent role of the filler network on the viscoelastic and fatigue damage behaviors of SBR composites.

9.
Polymers (Basel) ; 13(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806621

RESUMO

3D printed neat thermoplastic polymers (TPs) and continuous fiber-reinforced thermoplastic composites (CFRTPCs) by fused filament fabrication (FFF) are becoming attractive materials for numerous applications. However, the structure of these materials exhibits interfaces at different scales, engendering non-optimal mechanical properties. The first part of the review presents a description of these interfaces and highlights the different strategies to improve interfacial bonding. The actual knowledge on the structural aspects of the thermoplastic matrix is also summarized in this contribution with a focus on crystallization and orientation. The research to be tackled to further improve the structural properties of the 3D printed materials is identified. The second part of the review provides an overview of structural health monitoring technologies relying on the use of fiber Bragg grating sensors, strain gauge sensors and self-sensing. After a brief discussion on these three technologies, the needed research to further stimulate the development of FFF is identified. Finally, in the third part of this contribution the technology landscape of FFF processes for CFRTPCs is provided, including the future trends.

10.
Materials (Basel) ; 14(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670820

RESUMO

This pilot study aimed at investigating an alternative to irradiation-crosslinking to increase the structural stability of ethylene tetrafluoroethylene (ETFE), by mixing this polymer matrix with polyoxides. The latter consisted of aluminum polyphosphate (AP) having a flow temperature near to that of ETFE to facilitate melt-mixing by extrusion, and rigid fillers of metakaolin (MK). It was found that the ETFE/AP/MK composite with the formulation 60/20/20 (wt %) exhibited the most relevant properties. Indeed, when comparing this composite with neat ETFE, the structural stability was improved until 120 °C, the onset temperature of degradation passed from 381.5 to 459.4 °C, the elastic modulus evolved from 0.4 GPa to 1.6 GPa, and the tensile strength increased from 23 to 27 MPa. The results were briefly discussed based on a potential interaction between the polyoxides and the polymer matrix and synergistic effect between the two polyoxides.

11.
J Colloid Interface Sci ; 589: 318-326, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33472151

RESUMO

HYPOTHESIS: The setting time and mechanical properties of cements are a major technical concern for a long time in civil engineering. More recently those practical problems became a major concern for biomedical applications -in bone surgery and in dentistry- in particular concerning the setting time which should be minimized. The possibility to add organic additives to interact with the different constituting ions in cements constitutes a way to modify the setting kinetics. We made the assumption that a hydrolysable polyphenol like tannic acid could modify the setting time and the physical properties of Mineral Trioxide Aggregate (MTA). EXPERIMENTS: Tannic acid is added in variable proportions to the water used to set MTA. The formation of the hybrid organic-mineral cements is investigated using a combination of structural, chemical and mechanical methods. X-ray tomography was also used to investigate the changes in porosity and pore size distribution upon incorporation of tannic acid in MTA based cements. The hydrophilicity of the cements was evaluated by measuring the permeation kinetics of small water droplets. FINDINGS: We found that tannic acid allowed to reduce markedly the setting time of MTA based cements. The obtained cements have an increased hydrophilicity and display excellent resistance to compression. The number of pores but not the average pore size is also affected. The possible roles of tannic acid in modifying the cement properties are discussed.

12.
Med Hypotheses ; 144: 110025, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33254478

RESUMO

An increasing body of evidence suggests a protective effect of some psychoactive substances against SARS-CoV-2 (Severe Acute Respiratory Syndrome coronavirus type 2). Recent findings suggest that patients with psychiatric disorders are less affected by SARS-CoV-2 than their caregivers, which may seem surprising given some of the frequent risk factors for an unfavorable course of the disease (e.g., obesity, diabetes, cardiovascular and pulmonary diseases). We propose here a mixed pharmacoepidemiological and pharmacochemical hypothesis to explain these findings. A number of psychotropic drugs exhibit activities against coronaviruses (Middle East Respiratory Syndrome coronavirus (MERS-CoV), the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV-1) and the Infectious Bronchitis Virus (IBV)) and have been put forward as potentially anti-SARS-CoV-2. These treatments include numerous mee-too drugs (chemically and pharmacologically linked to those which have demonstrated anti-SARS-CoV-2 efficacy) which are frequently prescribed in psychiatric settings. Taken alone or in polypharmacy, these drugs could have a prophylactic anti-SARS-CoV-2 effect, explaining the unexpectedly low proportion of patients with psychiatric disorders and COVID-19. Associated factors such as nicotine can also be considered in the context of a broad chemoprophylactic hypothesis in patients with psychiatric disorders taking different psychoactive substances.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/complicações , COVID-19/prevenção & controle , Transtornos Mentais/complicações , Transtornos Mentais/tratamento farmacológico , Psicotrópicos/uso terapêutico , Antivirais/uso terapêutico , Cuidadores , Quimioprevenção , Comorbidade , Infecções por Coronavirus/prevenção & controle , Humanos , Sistema Imunitário/virologia , Modelos Teóricos , Neurotransmissores/metabolismo , Nicotina/farmacologia , Fatores de Risco , SARS-CoV-2/efeitos dos fármacos , Síndrome Respiratória Aguda Grave/prevenção & controle , Replicação Viral
13.
Polymers (Basel) ; 11(8)2019 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-31426605

RESUMO

Polylactide (PLA) was blended by conventional and reactive extrusion with limonene (LM) or myrcene (My) as bio-based plasticizers. As-processed blends were carefully analyzed by a multiscale and multidisciplinary approach to tentatively determine their chemical structure, microstructure, thermal properties, tensile and impact behaviors, and hydrothermal stability. The main results indicated that LM and My were efficient plasticizers for PLA, since compared to neat PLA, the glass transition temperature was reduced, the ultimate tensile strain was increased, and the impact strength was increased, independently of the type of extrusion. The addition of a free radical initiator during the extrusion of PLA/LM was beneficial for the mechanical properties. Indeed, the probable formation of local branched/crosslinked regions in the PLA matrix enhanced the matrix crystallinity, the tensile yield stress, and the tensile ultimate stress compared to the non-reactive blend PLA/LM, while the other properties were retained. For PLA/My blends, reactive extrusion was detrimental for the mechanical properties since My polymerization was accelerated resulting in a drop of the tensile ultimate strain and impact strength, and an increase of the glass transition temperature. Indeed, large inclusions of polymerized My were formed, decreasing the available content of My for the plasticization and enhancing cavitation from inclusion-matrix debonding.

14.
Materials (Basel) ; 12(15)2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31362445

RESUMO

The effect of reprocessing on the quasi-static uniaxial tensile behavior of two commercial polypropylene (PP)-based composites is experimentally investigated and modeled. In particular, the studied materials consist of an unfilled high-impact PP and a talc-filled high-impact PP. These PP composites are subjected to repeated processing cycles, including a grinding step and an extrusion step to simulate recycling at the laboratory level, the selected reprocessing numbers for this study being 0, 3, 6, 9, and 12. Because the repeated reprocessing leads to thermo-mechanical degradation by chain scission mechanisms, the tensile behavior of the two materials exhibits a continuous decrease of elastic modulus and failure strain with the increasing amount of reprocessing. A physically consistent three-dimensional constitutive model is used to predict the tensile response of non-recycled materials with strain rate dependence. For the recycled materials, the reprocessing effect is accounted by incorporating the reprocessing sensitive coefficient into the constitutive model for Young's modulus, failure strain, softening, and hardening equations. Our predictions of true stress-true strain curves for non-recycled and recycled 108MF97 and 7510-are in good agreement with experimental data and can be useful for industries and companies which are looking for a model able to predict the recycling effect on mechanical behavior of polymer-based materials.

15.
J Phys Chem Lett ; 5(19): 3436-40, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26278460

RESUMO

The formation of polydopamine under mild oxidation conditions from dopamine solutions with mechanical agitation leads to the formation of films that can functionalize all kinds of materials. In the absence of stirring of the solution, we report the formation of polydopamine films at the air/water interface (PDA A/W) and suggest that it arises from an homogeneous nucleation process. These films grow two times faster than in solution and can be deposited on hydrophilic or hydrophobic substrates by the Langmuir-Schaeffer technique. Thanks to this new method, porous and hydrophobic materials like polytetrafluoroethylene (PTFE) membranes can be completely covered with a 35 nm thick PDA A/W film after only 3h of reaction. Finally the oxidation of a monomer followed by a polymerization in water is not exclusive to polydopamine since we also transferred polyaniline functional films from the air/water interface to solid substrates. These findings suggest that self-assembly from a solution containing hydrophilic monomers undergoing a chemical transformation (here oxidation and oligomerization) could be a general method to produce films at the liquid/air interface.

16.
Langmuir ; 27(6): 2819-25, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21332218

RESUMO

The deposition of "polydopamine" films, from an aqueous solution containing dopamine or other catecholamines, constitutes a new and versatile way to functionalize solid-liquid interfaces. Indeed such films can be deposited on almost all kinds of materials. Their deposition kinetics does not depend markedly on the surface chemistry of the substrate, and the films can reach thickness of a few tens of nanometers in a single reaction step. Up to now, even if a lot is known about the oxidation mechanism of dopamine in solution, only little information is available to describe the deposition mechanism on surfaces either by oxidation in solution or by electrodeposition. The deposition kinetics of melanin was only investigated from dopamine solutions using oxygen or ammonium persulfate as an oxidant and from a tris(hydroxymethyl) aminomethane (Tris) containing buffer solutions at pH 8.5. Many other oxidants could be used, and the buffer agent containing a primary amine group may influence the deposition process. Herein we show that the deposition kinetics of melanin from dopamine containing buffers at pH 8.5 can be markedly modified using Cu(2+) instead of O2 as an oxidant: the deposition kinetics remains linear up to thicknesses of more than 70 nm, whereas the film growth stops at 45 ± 5 nm in the presence of 02. In addition, the films prepared from Cu(2+) containing solutions display an absorption spectrum with defined peaks at 320 and 370 nm, which are absent in the spectra of films prepared in oxygenated solutions. The replacement of Tris buffer by phosphate buffer also has a marked effect on the melanin deposition kinetics.


Assuntos
Sulfato de Amônio/química , Dopamina/química , Melaninas/química , Oxidantes/química , Oxigênio/química , Soluções Tampão , Concentração de Íons de Hidrogênio , Soluções
17.
Clin Orthop Relat Res ; 469(8): 2318-26, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21132414

RESUMO

BACKGROUND: Crosslinked UHMWPE as a bearing surface in total joint arthroplasty has higher wear resistance than conventional UHMWPE but lower strength and toughness. To produce crosslinked UHMWPE with improved mechanical properties, the material can be treated before crosslinking by tension to induce molecular alignment (texture). QUESTIONS/PURPOSES: We asked how (1) the microstructure of UHMWPE evolves when subjected to tension and (2) whether the new microstructure (texture) increases strength and toughness. METHODS: We analyzed microstructure evolution of UHMWPE by small- and wide-angle xray scattering and scanning electron microscopy. We then developed a method to characterize the local strength and toughness of undeformed and textured UHMWPEs by means of nanoscratch tests along and perpendicular to the specimen axis. In three samples we determined the scratch characteristics in terms of deformation mode, coefficient of friction (µ), and viscoelastic recovery (r). RESULTS: Before the tensile process, the scratch behavior of UHMWPE was characterized by a µ ranging from 0.64 to 0.68, no cracking, and r ranging from 0.58 to 0.60. Microfibrillar morphologic features resulted from the tensile process. The new microstructure had an increased strength (r=0.78) and decreased toughness (cracking+µ=0.77) perpendicular to the fibril axis and decreased strength (r=0.53) and increased toughness (no cracking+µ=0.55) parallel to the fibril axis. CONCLUSIONS: Textured UHMWPE behaves like a fiber composite with high strength and toughness in well-defined directions. However, the effect of crosslinking on these specific properties is unknown and therefore it is important to verify that the properties are retained. If wear resistance of crosslinked-textured UHMWPE is at least as high as that of crosslinked UHMWPE, novel medical devices made of crosslinked-textured UHMWPE could be developed and clinically tested.


Assuntos
Polietilenos/química , Reagentes de Ligações Cruzadas , Análise de Falha de Equipamento , Prótese de Quadril , Prótese do Joelho , Teste de Materiais , Microfibrilas , Projetos Piloto , Falha de Prótese , Propriedades de Superfície , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...