Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Trop Med Hyg ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697074

RESUMO

Animal African trypanosomiasis, also known as nagana, is caused by Trypanosoma species, which cause significant clinical diseases and lead to losses in animal production. We carried out a cross-sectional survey to investigate the composition of vectors and parasite diversity in two districts in the eastern region of Ghana where pigs and cattle were exposed to tsetse bites. We performed cytochrome c oxidase subunit 1 polymerase chain reaction (PCR) to identify tsetse species and internal transcribed spacer 1 PCR to identify Trypanosoma species. Also, we investigated the source of tsetse blood meal based on mitochondrial cytochrome b gene sequence analysis. A total of 229 tsetse, 65 pigs, and 20 cattle were investigated for trypanosomes. An overall vector density of 4.3 tsetse/trap/day was observed. A trypanosome prevalence of 58.9% (95% CI = 52.5-65.1%), 46.2% (95% CI = 34.6-58.1%), and 0.0% (95% CI = 0.0-16.1%) in tsetse, pigs, and cattle, respectively, was detected. Trypanosoma congolense was predominant, with a prevalence of 33.3% (95% CI = 73.3-86.5%) in tsetse. There was evidence of multiple infections in tsetse and pigs. Approximately 39% of the tsetse were positive for multiple infections of T. congolense and Trypanosoma simiae. Parasite prevalence in pigs across the communities was high, with significant differences associated between locations (χ2 = 28.06, 95% CI = 0.05-0.81, P = 0.0009). Tsetse blood meal analysis revealed feeding on domestic Sus scrofa domesticus (pigs) and Phacochoerus africanus (warthogs). Infective tsetse may transmit trypanosomes to livestock and humans in the communities studied.

2.
Malar J ; 22(1): 76, 2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870966

RESUMO

BACKGROUND: The World Health Organization recommends parasitological confirmation of all suspected malaria cases by microscopy or rapid diagnostic tests (RDTs) before treatment. These conventional tools are widely used for point-of-care diagnosis in spite of their poor sensitivity at low parasite density. Previous studies in Ghana have compared microscopy and RDT using standard 18S rRNA PCR as reference with varying outcomes. However, how these conventional tools compare with ultrasensitive varATS qPCR has not been studied. This study, therefore, sought to investigate the clinical performance of microscopy and RDT assuming highly sensitive varATS qPCR as gold standard. METHODS: 1040 suspected malaria patients were recruited from two primary health care centers in the Ashanti Region of Ghana and tested for malaria by microscopy, RDT, and varATS qPCR. The sensitivity, specificity, and predictive values were assessed using varATS qPCR as gold standard. RESULTS: Parasite prevalence was 17.5%, 24.5%, and 42.1% by microscopy, RDT, and varATS qPCR respectively. Using varATS qPCR as the standard, RDT was more sensitive (55.7% vs 39.3%), equally specific (98.2% vs 98.3%), and reported higher positive (95.7% vs 94.5%) and negative predictive values (75.3% vs 69.0%) than microscopy. Consequently, RDT recorded better diagnostic agreement (kappa = 0.571) with varATS qPCR than microscopy (kappa = 0.409) for clinical detection of malaria. CONCLUSIONS: RDT outperformed microscopy for the diagnosis of Plasmodium falciparum malaria in the study. However, both tests missed over 40% of infections that were detected by varATS qPCR. Novel tools are needed to ensure prompt diagnosis of all clinical malaria cases.


Assuntos
Malária Falciparum , Malária , Humanos , Microscopia , Reação em Cadeia da Polimerase , Gana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...