Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 470: 49-61, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33188738

RESUMO

Mutations in non-muscle myosin 2A (NM2A) encompass a wide spectrum of anomalies collectively known as MYH9-Related Disease (MYH9-RD) in humans that can include macrothrombocytopenia, glomerulosclerosis, deafness, and cataracts. We previously created mouse models of the three mutations most frequently found in humans: R702C, D1424N, and E1841K. While homozygous R702C and D1424N mutations are embryonic lethal, we found homozygous mutant E1841K mice to be viable. However the homozygous male, but not female, mice were infertile. Here, we report that these mice have reduced testis size and defects in actin-associated junctions in Sertoli cells, resulting in inability to form the blood-testis barrier and premature germ cell loss. Moreover, compound double heterozygous (R702C/E1841K and D1424/E1841K) males show the same abnormalities in testes as E1841K homozygous males. Conditional ablation of either NM2A or NM2B alone in Sertoli cells has no effect on fertility and testis size, however deletion of both NM2A and NM2B in Sertoli cells results in infertility. Isolation of mutant E1841K Sertoli cells reveals decreased NM2A and F-actin colocalization and thicker NM2A filaments. Furthermore, AE1841K/AE1841K and double knockout Sertoli cells demonstrate microtubule disorganization and increased tubulin acetylation, suggesting defects in the microtubule cytoskeleton. Together, these results demonstrate that NM2A and 2B paralogs play redundant roles in Sertoli cells and are essential for testes development and normal fertility.


Assuntos
Actomiosina/metabolismo , Citoesqueleto/ultraestrutura , Infertilidade Masculina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Células de Sertoli/fisiologia , Actinas/metabolismo , Actomiosina/química , Animais , Barreira Hematotesticular/metabolismo , Forma Celular , Citoesqueleto/metabolismo , Infertilidade Masculina/patologia , Infertilidade Masculina/fisiopatologia , Masculino , Camundongos , Microtúbulos/química , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Cadeias Pesadas de Miosina/genética , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIB/genética , Miosina não Muscular Tipo IIB/metabolismo , Tamanho do Órgão , Permeabilidade , Mutação Puntual , Células de Sertoli/citologia , Células de Sertoli/ultraestrutura , Testículo/patologia , Tubulina (Proteína)/metabolismo
2.
Mol Biol Cell ; 31(18): 1974-1987, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32583739

RESUMO

Among the three nonmuscle myosin 2 (NM2) paralogs, NM 2A and 2B, but not 2C, are detected in endothelial cells. To study the role of NM2 in vascular formation, we ablate NM2 in endothelial cells in mice. Ablating NM2A, but not NM2B, results in reduced blood vessel coverage and increased vascular branching in the developing mouse skin and coronary vasculature. NM2B becomes essential for vascular formation when NM2A expression is limited. Mice ablated for NM2B and one allele of NM2A develop vascular abnormalities similar to those in NM2A ablated mice. Using the embryoid body angiogenic sprouting assay in collagen gels reveals that NM2A is required for persistent angiogenic sprouting by stabilizing the endothelial cell cortex, and thereby preventing excessive branching and ensuring persistent migration of the endothelial sprouts. Mechanistically, NM2 promotes focal adhesion formation and cortical protrusion retraction during angiogenic sprouting. Further studies demonstrate the critical role of Rho kinase-activated NM2 signaling in the regulation of angiogenic sprouting in vitro and in vivo.


Assuntos
Neovascularização Fisiológica/fisiologia , Miosina não Muscular Tipo IIA/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Indutores da Angiogênese , Animais , Colágeno/metabolismo , Proteínas do Citoesqueleto/metabolismo , Células Endoteliais/metabolismo , Camundongos , Camundongos Knockout , Morfogênese , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo II/metabolismo , Neovascularização Fisiológica/genética , Transdução de Sinais , Quinases Associadas a rho/metabolismo
3.
PLoS One ; 15(3): e0230126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226034

RESUMO

The generation of genetically modified mouse models derived from gene targeting (GT) in mouse embryonic stem (ES) cells (mESCs) has greatly advanced both basic and clinical research. Our previous finding that gene targeting at the Myh9 exon2 site in mESCs has a pronounced high homologous recombination (HR) efficiency (>90%) has facilitated the generation of a series of nonmuscle myosin II (NM II) related mouse models. Furthermore, the Myh9 gene locus has been well demonstrated to be a new safe harbor for site-specific insertion of other exogenous genes. In the current study, we intend to investigate the molecular biology underlying for this high HR efficiency from other aspects. Our results confirmed some previously characterized properties and revealed some unreported observations: 1) The comparison and analysis of the targeting events occurring at the Myh9 and several widely used loci for targeting transgenesis, including ColA1, HPRT, ROSA26, and the sequences utilized for generating these targeting constructs, indicated that a total length about 6 kb with approximate 50% GC-content of the 5' and 3' homologous arms, may facilitate a better performance in terms of GT efficiency. 2) Despite increasing the length of the homologous arms, shifting the targeting site from the Myh9 exon2, to intron2, or exon3 led to a gradually reduced GT frequency (91.7, 71.8 and 50.0%, respectively). This finding provides the first evidence that the HR frequency may also be associated with the targeting site even in the same locus. Meanwhile, the decreased trend of the GT efficiency at these targeting sites was consistent with the reduced percentage of simple sequence repeat (SSR) and short interspersed nuclear elements (SINEs) in the sequences for generating the targeting constructs, suggesting the potential effects of these DNA elements on GT efficiency; 3) Our series of targeting experiments and analyses with truncated 5' and 3' arms at the Myh9 exon2 site demonstrated that GT efficiency positively correlates with the total length of the homologous arms (R = 0.7256, p<0.01), confirmed that a 2:1 ratio of the length, a 50% GC-content and the higher amount of SINEs for the 5' and 3' arms may benefit for appreciable GT frequency. Though more investigations are required, the Myh9 gene locus appears to be an ideal location for identifying HR-related cis and trans factors, which in turn provide mechanistic insights and also facilitate the practical application of gene editing.


Assuntos
Marcação de Genes , Recombinação Homóloga/genética , Cadeias Pesadas de Miosina/genética , Animais , Edição de Genes/métodos , Marcação de Genes/métodos , Técnicas de Genotipagem , Camundongos , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas , Transformação Genética
4.
Mol Biol Cell ; 30(16): 1961-1973, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31318315

RESUMO

Contact guidance refers to the ability of cells to sense the geometrical features of the microenvironment and respond by changing their shape and adopting the appropriate orientation. Inhibition and ablation of nonmuscle myosin 2 (NM2) paralogues have demonstrated their importance for contact guidance. However, the specific roles of the NM2 paralogues have not been systematically studied. In this work we use micropatterned substrates to examine the roles of NM2A and NM2B and to elucidate the relationship of the microenvironment, actomyosin, and microtubules in contact guidance. We show that contact guidance is preserved following loss of NM2B and that expression of NM2A alone is sufficient to establish an appropriate orientation of the cells. Loss of NM2B and overexpression of NM2A result in a prominent cell polarization that is found to be linked to the increased alignment of microtubules with the actomyosin scaffold. Suppression of actomyosin with blebbistatin reduces cell polarity on a flat surface, but not on a surface with contact guidance cues. This indicates that the lost microtubule-actomyosin interactions are compensated for by microtubule-microenvironment interactions, which are sufficient to establish cell polarity through contact guidance.


Assuntos
Comunicação Celular , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Actomiosina/metabolismo , Animais , Polaridade Celular , Forma Celular , Fibroblastos/metabolismo , Camundongos , Microtúbulos/metabolismo , Fibras de Estresse/metabolismo
5.
Commun Biol ; 2: 95, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30886905

RESUMO

The morphogenesis of mammalian embryonic external genitalia (eExG) shows dynamic differences between males and females. In genotypic males, eExG are masculinized in response to androgen signaling. Disruption of this process can give rise to multiple male reproductive organ defects. Currently, mechanisms of androgen-driven sexually dimorphic organogenesis are still unclear. We show here that mesenchymal-derived actomyosin contractility, by MYH10, is essential for the masculinization of mouse eExG. MYH10 is expressed prominently in the bilateral mesenchyme of male eExG. Androgen induces MYH10 protein expression and actomyosin contractility in the bilateral mesenchyme. Inhibition of actomyosin contractility through blebbistatin treatment and mesenchymal genetic deletion induced defective urethral masculinization with reduced mesenchymal condensation. We also suggest that actomyosin contractility regulates androgen-dependent mesenchymal directional cell migration to form the condensation in the bilateral mesenchyme leading to changes in urethral plate shape to accomplish urethral masculinization. Thus, mesenchymal-derived actomyosin contractility is indispensable for androgen-driven urethral masculinization.


Assuntos
Actomiosina/metabolismo , Androgênios/metabolismo , Uretra/fisiologia , Animais , Biomarcadores , Imunofluorescência , Imuno-Histoquímica , Masculino , Camundongos , Modelos Biológicos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina não Muscular Tipo IIB/genética , Miosina não Muscular Tipo IIB/metabolismo
6.
Nat Commun ; 9(1): 4600, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389913

RESUMO

Impaired alveolar formation and maintenance are features of many pulmonary diseases that are associated with significant morbidity and mortality. In a forward genetic screen for modulators of mouse lung development, we identified the non-muscle myosin II heavy chain gene, Myh10. Myh10 mutant pups exhibit cyanosis and respiratory distress, and die shortly after birth from differentiation defects in alveolar epithelium and mesenchyme. From omics analyses and follow up studies, we find decreased Thrombospondin expression accompanied with increased matrix metalloproteinase activity in both mutant lungs and cultured mutant fibroblasts, as well as disrupted extracellular matrix (ECM) remodeling. Loss of Myh10 specifically in mesenchymal cells results in ECM deposition defects and alveolar simplification. Notably, MYH10 expression is downregulated in the lung of emphysema patients. Altogether, our findings reveal critical roles for Myh10 in alveologenesis at least in part via the regulation of ECM remodeling, which may contribute to the pathogenesis of emphysema.


Assuntos
Matriz Extracelular/metabolismo , Pneumopatias/metabolismo , Cadeias Pesadas de Miosina/deficiência , Miosina não Muscular Tipo IIB/deficiência , Sequência de Aminoácidos , Animais , Regulação para Baixo/genética , Enfisema/patologia , Etilnitrosoureia , Feminino , Pneumopatias/patologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Mesoderma/metabolismo , Camundongos Endogâmicos C57BL , Mutagênese/genética , Mutação de Sentido Incorreto/genética , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina não Muscular Tipo IIB/química , Miosina não Muscular Tipo IIB/genética , Miosina não Muscular Tipo IIB/metabolismo , Organogênese , Fenótipo , Alvéolos Pulmonares/embriologia , Alvéolos Pulmonares/metabolismo , Regulação para Cima/genética
7.
Mol Biol Cell ; 29(19): 2326-2335, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30044719

RESUMO

Three paralogues of nonmuscle myosin 2 (NM 2A, 2B, and 2C) are expressed in mammals, and the heavy chains are the products of three different genes (Myh9, Myh10, and Myh14, respectively). NM 2A and 2B are essential for mouse development, while 2C is not. Studies on NM 2C are limited and the in vivo function of this paralogue is not clear. Using homologous recombination, cDNA encoding nonmuscle myosin heavy chain 2C1 fused with GFP was introduced into the first coding exon of Myh9, replacing NM 2A expression with NM 2C1 expression in mice. In contrast to A-/A- embryos, which die by embryonic day (E) 6.5, AC1*gfp/AC1*gfp embryos survive through E8.5, demonstrating that NM 2C1 can support mouse development beyond gastrulation. At E9.5 and E10.5, however, AC1*gfp/AC1*gfp embryos are developmentally delayed, with abnormalities in placental vascular formation. The defect in vascular formation is confirmed in allantois explants from AC1*gfp/AC1*gfp embryos. Thus, NM 2C1 cannot support normal placental vascular formation. In addition, AC1*gfp/AC1*gfp mouse embryonic fibroblasts (MEFs) migrate rapidly but with impaired persistence and develop smaller, less mature focal adhesions than A+/A+ MEFs. This is attributed to enhanced NM 2C1 actomyosin stability and different NM 2C1 subcellular localization than in NM 2A.


Assuntos
Gastrulação , Miosina Tipo II/metabolismo , Neovascularização Fisiológica , Miosina não Muscular Tipo IIA/metabolismo , Placenta/irrigação sanguínea , Actomiosina/metabolismo , Alantoide , Animais , Movimento Celular , Perda do Embrião/patologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Fibroblastos/citologia , Recuperação de Fluorescência Após Fotodegradação , Camundongos , Gravidez , Fibras de Estresse/metabolismo
8.
Gene ; 664: 152-167, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-29679756

RESUMO

The MYH9 gene encodes the heavy chain of non-muscle myosin IIA, a widely expressed cytoplasmic myosin that participates in a variety of processes requiring the generation of intracellular chemomechanical force and translocation of the actin cytoskeleton. Non-muscle myosin IIA functions are regulated by phosphorylation of its 20 kDa light chain, of the heavy chain, and by interactions with other proteins. Variants of MYH9 cause an autosomal-dominant disorder, termed MYH9-related disease, and may be involved in other conditions, such as chronic kidney disease, non-syndromic deafness, and cancer. This review discusses the structure of the MYH9 gene and its protein, as well as the regulation and physiologic functions of non-muscle myosin IIA with particular reference to embryonic development. Moreover, the review focuses on current knowledge about the role of MYH9 variants in human disease.


Assuntos
Perda Auditiva Neurossensorial/genética , Proteínas Motores Moleculares/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Trombocitopenia/congênito , Animais , Linhagem Celular , Surdez/genética , Humanos , Camundongos , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/genética , Mutação , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/genética , Neoplasias/genética , Miosina não Muscular Tipo IIA/química , Miosina não Muscular Tipo IIA/genética , Fosforilação , Insuficiência Renal Crônica/genética , Trombocitopenia/genética
9.
J Cell Sci ; 131(6)2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29487177

RESUMO

Many actin filaments in animal cells are co-polymers of actin and tropomyosin. In many cases, non-muscle myosin II associates with these co-polymers to establish a contractile network. However, the temporal relationship of these three proteins in the de novo assembly of actin filaments is not known. Intravital subcellular microscopy of secretory granule exocytosis allows the visualisation and quantification of the formation of an actin scaffold in real time, with the added advantage that it occurs in a living mammal under physiological conditions. We used this model system to investigate the de novo assembly of actin, tropomyosin Tpm3.1 (a short isoform of TPM3) and myosin IIA (the form of non-muscle myosin II with its heavy chain encoded by Myh9) on secretory granules in mouse salivary glands. Blocking actin polymerization with cytochalasin D revealed that Tpm3.1 assembly is dependent on actin assembly. We used time-lapse imaging to determine the timing of the appearance of the actin filament reporter LifeAct-RFP and of Tpm3.1-mNeonGreen on secretory granules in LifeAct-RFP transgenic, Tpm3.1-mNeonGreen and myosin IIA-GFP (GFP-tagged MYH9) knock-in mice. Our findings are consistent with the addition of tropomyosin to actin filaments shortly after the initiation of actin filament nucleation, followed by myosin IIA recruitment.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Tropomiosina/metabolismo , Citoesqueleto de Actina/genética , Actinas/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cadeias Pesadas de Miosina , Miosina não Muscular Tipo IIA/genética , Ligação Proteica , Vesículas Secretórias/genética , Vesículas Secretórias/metabolismo , Tropomiosina/genética
10.
PLoS One ; 13(2): e0192641, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29438440

RESUMO

Targeted integration of exogenous genes into so-called safe harbors/friend sites, offers the advantages of expressing normal levels of target genes and preventing potentially adverse effects on endogenous genes. However, the ideal genomic loci for this purpose remain limited. Additionally, due to the inherent and unresolved issues with the current genome editing tools, traditional embryonic stem (ES) cell-based targeted transgenesis technology is still preferred in practical applications. Here, we report that a high and repeatable homologous recombination (HR) frequency (>95%) is achieved when an approximate 6kb DNA sequence flanking the MYH9 gene exon 2 site is used to create the homology arms for the knockout/knock-in of diverse nonmuscle myosin II (NM II) isoforms in mouse ES cells. The easily obtained ES clones greatly facilitated the generation of multiple NM II genetic replacement mouse models, as characterized previously. Further investigation demonstrated that though the targeted integration site for exogenous genes is shifted to MYH9 intron 2 (about 500bp downstream exon 2), the high HR efficiency and the endogenous MYH9 gene integrity are not only preserved, but the expected expression of the inserted gene(s) is observed in a pre-designed set of experiments conducted in mouse ES cells. Importantly, we confirmed that the expression and normal function of the endogenous MYH9 gene is not affected by the insertion of the exogenous gene in these cases. Therefore, these findings suggest that like the commonly used ROSA26 site, the MYH9 gene locus may be considered a new safe harbor for high-efficiency targeted transgenesis and for biomedical applications.


Assuntos
Células-Tronco Embrionárias/metabolismo , Miosina não Muscular Tipo IIA/genética , Animais , Éxons , Íntrons , Camundongos , Camundongos Transgênicos , Cadeias Pesadas de Miosina
11.
Sci Rep ; 7(1): 11211, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894257

RESUMO

Rbfox RNA-binding proteins play important roles in the regulation of alternative pre-mRNA splicing, but their role in other gene regulatory mechanisms is not well understood. Here, we show that Rbfox2 is a novel constituent of cytoplasmic stress granules, the translational silencing machinery assembled in response to cellular stress. We also show that the RNA binding activity of the Rbfox family protein is crucial for its localization into stress granules. To investigate the role of Rbfox2 in stress granules we used RNA-immunoprecipitation sequencing to identify cytoplasmic transcriptome-wide targets of Rbfox2. We report that a subset of cell cycle-related genes including retinoblastoma 1 is the target of Rbfox2 in cytoplasmic stress granules, and Rbfox2 regulates the retinoblastoma 1 mRNA and protein expression levels during and following stress exposure. Our study proposes a novel function for Rbfox2 in cytoplasmic stress granules.


Assuntos
Ciclo Celular , Grânulos Citoplasmáticos/química , Fatores de Processamento de RNA/análise , RNA Mensageiro/análise , Proteínas Repressoras/análise , Proteínas de Ligação a Retinoblastoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Perfilação da Expressão Gênica , Células HeLa , Humanos , Imunoprecipitação , Ligação Proteica , Análise de Sequência de RNA
12.
J Cell Sci ; 130(16): 2696-2706, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28687623

RESUMO

Nonmuscle myosin IIB (NMIIB; heavy chain encoded by MYH10) is essential for cardiac myocyte cytokinesis. The role of NMIIB in other cardiac cells is not known. Here, we show that NMIIB is required in epicardial formation and functions to support myocardial proliferation and coronary vessel development. Ablation of NMIIB in epicardial cells results in disruption of epicardial integrity with a loss of E-cadherin at cell-cell junctions and a focal detachment of epicardial cells from the myocardium. NMIIB-knockout and blebbistatin-treated epicardial explants demonstrate impaired mesenchymal cell maturation during epicardial epithelial-mesenchymal transition. This is manifested by an impaired invasion of collagen gels by the epicardium-derived mesenchymal cells and the reorganization of the cytoskeletal structure. Although there is a marked decrease in the expression of mesenchymal genes, there is no change in Snail (also known as Snai1) or E-cadherin expression. Studies from epicardium-specific NMIIB-knockout mice confirm the importance of NMIIB for epicardial integrity and epicardial functions in promoting cardiac myocyte proliferation and coronary vessel formation during heart development. Our findings provide a novel mechanism linking epicardial formation and epicardial function to the activity of the cytoplasmic motor protein NMIIB.


Assuntos
Diferenciação Celular/genética , Células-Tronco Mesenquimais/fisiologia , Cadeias Pesadas de Miosina/fisiologia , Miosina não Muscular Tipo IIB/fisiologia , Pericárdio/citologia , Pericárdio/embriologia , Animais , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Coração/embriologia , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Cadeias Pesadas de Miosina/genética , Miosina não Muscular Tipo IIB/genética , Organogênese/genética
13.
J Cell Biol ; 216(7): 1925-1936, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28600434

RESUMO

Membrane remodeling plays a fundamental role during a variety of biological events. However, the dynamics and the molecular mechanisms regulating this process within cells in mammalian tissues in situ remain largely unknown. In this study, we use intravital subcellular microscopy in live mice to study the role of the actomyosin cytoskeleton in driving the remodeling of membranes of large secretory granules, which are integrated into the plasma membrane during regulated exocytosis. We show that two isoforms of nonmuscle myosin II, NMIIA and NMIIB, control distinct steps of the integration process. Furthermore, we find that F-actin is not essential for the recruitment of NMII to the secretory granules but plays a key role in the assembly and activation of NMII into contractile filaments. Our data support a dual role for the actomyosin cytoskeleton in providing the mechanical forces required to remodel the lipid bilayer and serving as a scaffold to recruit key regulatory molecules.


Assuntos
Células Acinares/metabolismo , Membrana Celular/metabolismo , Exocitose , Membranas Intracelulares/metabolismo , Fusão de Membrana , Miosina não Muscular Tipo IIA/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Glândulas Salivares/metabolismo , Vesículas Secretórias/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genótipo , Microscopia Intravital , Cinética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Microscopia de Vídeo , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIB/genética , Fenótipo , Glândulas Salivares/citologia , Transdução de Sinais
14.
Dev Biol ; 427(1): 121-130, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28478097

RESUMO

In kidney development, connection of the nephric duct (ND) to the cloaca and subsequent sprouting of the ureteric bud (UB) from the ND are important for urinary exit tract formation. Although the roles of Ret signaling are well established, it remains unclear how intracellular cytoskeletal proteins regulate these morphogenetic processes. Myh9 and Myh10 encode two different non-muscle myosin II heavy chains, and Myh9 mutations in humans are implicated in congenital kidney diseases. Here we report that ND/UB lineage-specific deletion of Myh9/Myh10 in mice caused severe hydroureter/hydronephrosis at birth. At mid-gestation, the mutant ND/UB epithelia exhibited aberrant basal protrusion and ectopic UB formation, which likely led to misconnection of the ureter to the bladder. In addition, the mutant epithelia exhibited apical extrusion followed by massive apoptosis in the lumen, which could be explained by reduced apical constriction and intercellular adhesion mediated by E-cadherin. These phenotypes were not ameliorated by genetic reduction of the tyrosine kinase receptor Ret. In contrast, ERK was activated in the mutant cells and its chemical inhibition partially ameliorated the phenotypes. Thus, myosin II is essential for maintaining the apicobasal integrity of the developing kidney epithelia independently of Ret signaling.


Assuntos
Epitélio/anormalidades , Rim/embriologia , Miosina não Muscular Tipo IIA/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Ureter/anormalidades , Bexiga Urinária/anormalidades , Animais , Animais Recém-Nascidos , Cães , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Hibridização In Situ , Rim/metabolismo , Células Madin Darby de Rim Canino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Néfrons/anormalidades , Néfrons/metabolismo , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIB/genética , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Ureter/metabolismo , Bexiga Urinária/metabolismo
15.
Nat Cell Biol ; 19(2): 85-93, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28114272

RESUMO

The cellular mechanisms governing non-muscle myosin II (NM2) filament assembly are largely unknown. Using EGFP-NM2A knock-in fibroblasts and multiple super-resolution imaging modalities, we characterized and quantified the sequential amplification of NM2 filaments within lamellae, wherein filaments emanating from single nucleation events continuously partition, forming filament clusters that populate large-scale actomyosin structures deeper in the cell. Individual partitioning events coincide spatially and temporally with the movements of diverging actin fibres, suppression of which inhibits partitioning. These and other data indicate that NM2A filaments are partitioned by the dynamic movements of actin fibres to which they are bound. Finally, we showed that partition frequency and filament growth rate in the lamella depend on MLCK, and that MLCK is competing with centrally active ROCK for a limiting pool of monomer with which to drive lamellar filament assembly. Together, our results provide new insights into the mechanism and spatio-temporal regulation of NM2 filament assembly in cells.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Cadeias Leves de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Miosinas/metabolismo , Fragmentos de Peptídeos/metabolismo , Actomiosina/metabolismo , Animais , Técnicas de Introdução de Genes , Camundongos
16.
Mol Biol Cell ; 28(2): 240-251, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27881665

RESUMO

The role of nonmuscle myosin 2 (NM2) pulsatile dynamics in generating contractile forces required for developmental morphogenesis has been characterized, but whether these pulsatile contractions are an intrinsic property of all actomyosin networks is not known. Here we used live-cell fluorescence imaging to show that transient, local assembly of NM2A "pulses" occurs in the cortical cytoskeleton of single adherent cells of mesenchymal, epithelial, and sarcoma origin, independent of developmental signaling cues and cell-cell or cell-ECM interactions. We show that pulses in the cortical cytoskeleton require Rho-associated kinase- or myosin light chain kinase (MLCK) activity, increases in cytosolic calcium, and NM2 ATPase activity. Surprisingly, we find that cortical cytoskeleton pulses specifically require the head domain of NM2A, as they do not occur with either NM2B or a 2B-head-2A-tail chimera. Our results thus suggest that pulsatile contractions in the cortical cytoskeleton are an intrinsic property of the NM2A motor that may mediate its role in homeostatic maintenance of tension in the cortical cytoskeleton of adherent cells.


Assuntos
Miosina não Muscular Tipo IIA/metabolismo , Miosina não Muscular Tipo IIA/fisiologia , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Animais , Citoesqueleto/metabolismo , Citoesqueleto/fisiologia , Imagem Molecular , Contração Muscular/fisiologia , Quinase de Cadeia Leve de Miosina/metabolismo , Miosinas/metabolismo , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIB/metabolismo , Miosina não Muscular Tipo IIB/fisiologia , Imagem Óptica , Fosforilação , Domínios Proteicos , Quinases Associadas a rho/metabolismo
17.
Sci Rep ; 6: 24161, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-27063635

RESUMO

The actin cytoskeleton is a critical regulator of intestinal mucosal barrier permeability, and the integrity of epithelial adherens junctions (AJ) and tight junctions (TJ). Non muscle myosin II (NM II) is a key cytoskeletal motor that controls actin filament architecture and dynamics. While NM II has been implicated in the regulation of epithelial junctions in vitro, little is known about its roles in the intestinal mucosa in vivo. In this study, we generated a mouse model with an intestinal epithelial-specific knockout of NM IIA heavy chain (NM IIA cKO) and examined the structure and function of normal gut barrier, and the development of experimental colitis in these animals. Unchallenged NM IIA cKO mice showed increased intestinal permeability and altered expression/localization of several AJ/TJ proteins. They did not develop spontaneous colitis, but demonstrated signs of a low-scale mucosal inflammation manifested by prolapses, lymphoid aggregates, increased cytokine expression, and neutrophil infiltration in the gut. NM IIA cKO animals were characterized by a more severe disruption of the gut barrier and exaggerated mucosal injury during experimentally-induced colitis. Our study provides the first evidence that NM IIA plays important roles in establishing normal intestinal barrier, and protection from mucosal inflammation in vivo.


Assuntos
Mucosa Intestinal/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Claudinas/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Imunoglobulina A/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Neutrófilos/citologia , Neutrófilos/imunologia , Miosina não Muscular Tipo IIA/antagonistas & inibidores , Miosina não Muscular Tipo IIA/genética , Permeabilidade , Prolapso , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Junções Íntimas/metabolismo
18.
Mol Genet Genomic Med ; 3(5): 424-32, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26436108

RESUMO

Limb body wall complex (LBWC) and amniotic band sequence (ABS) are multiple congenital anomaly conditions with craniofacial, limb, and ventral wall defects. LBWC and ABS are considered separate entities by some, and a continuum of severity of the same condition by others. The etiology of LBWC/ABS remains unknown and multiple hypotheses have been proposed. One individual with features of LBWC and his unaffected parents were whole exome sequenced and Sanger sequenced as confirmation of the mutation. Functional studies were conducted using morpholino knockdown studies followed by human mRNA rescue experiments. Using whole exome sequencing, a de novo heterozygous mutation was found in the gene IQCK: c.667C>G; p.Q223E and confirmed by Sanger sequencing in an individual with LBWC. Morpholino knockdown of iqck mRNA in the zebrafish showed ventral defects including failure of ventral fin to develop and cardiac edema. Human wild-type IQCK mRNA rescued the zebrafish phenotype, whereas human p.Q223E IQCK mRNA did not, but worsened the phenotype of the morpholino knockdown zebrafish. This study supports a genetic etiology for LBWC/ABS, or potentially a new syndrome.

19.
Sci Rep ; 5: 14068, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26369831

RESUMO

To investigate the contribution of nonmuscle myosin II-A (NM II-A) to early cardiac development we crossed Myh9 floxed mice and Nkx2.5 cre-recombinase mice. Nkx2.5 is expressed in the early heart (E7.5) and later in the tongue epithelium. Mice homozygous for deletion of NM II-A (A(Nkx)/A(Nkx)) are born at the expected ratio with normal hearts, but consistently develop an invasive squamous cell carcinoma (SCC) of the tongue (32/32 A(Nkx)/A(Nkx)) as early as E17.5. To assess reproducibility a second, independent line of Myh9 floxed mice derived from a different embryonic stem cell clone was tested. This second line also develops SCC indistinguishable from the first (15/15). In A(Nkx)/A(Nkx) mouse tongue epithelium, genetic deletion of NM II-A does not affect stabilization of TP53, unlike a previous report for SCC. We attribute the consistent, early formation of SCC with high penetrance to the role of NM II in maintaining mitotic stability during karyokinesis.


Assuntos
Carcinoma de Células Escamosas/genética , Transformação Celular Neoplásica/genética , Deleção de Genes , Miosina não Muscular Tipo IIA/genética , Neoplasias da Língua/genética , Animais , Carcinoma de Células Escamosas/patologia , Movimento Celular/genética , Modelos Animais de Doenças , Progressão da Doença , Expressão Gênica , Variação Genética , Genótipo , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Camundongos , Camundongos Knockout , Mucosa/metabolismo , Mucosa/patologia , Gradação de Tumores , Invasividade Neoplásica , Proteína Oncogênica p21(ras)/genética , Proteína Oncogênica p21(ras)/metabolismo , Fenótipo , Reprodutibilidade dos Testes , Neoplasias da Língua/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...