Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(11): 3078-3088, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38467015

RESUMO

A biomimetic cell-based carrier system based on monocyte membranes and liposomes has been designed to create a hybrid "Monocyte-LP" which inherits the surface antigens of the monocytes along with the drug encapsulation property of the liposome. Förster resonance energy transfer (FRET) and polarization gated anisotropy measurements show the stiffness of the vesicles obtained from monocyte membranes (Mons), phosphatidylcholine membranes (LP), and Monocyte-LP to follow an increasing order of Mons > Monocyte-LP > LP. The dynamics of interface bound water molecules plays a key role in the elasticity of the vesicles, which in turn imparts higher delivery efficacy to the hybrid Monocyte-LP for a model anticancer drug doxorubicin than the other two vesicles, indicating a critical balance between flexibility and rigidity for an efficient cellular uptake. The present work provides insight on the influence of elasticity of delivery vehicles for enhanced drug delivery.


Assuntos
Antineoplásicos , Lipossomos , Lipossomos/metabolismo , Monócitos/metabolismo , Doxorrubicina , Sistemas de Liberação de Medicamentos
3.
Apoptosis ; 29(1-2): 191-209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37945815

RESUMO

During cancer cell invasion, integrin undergoes constant endo/exocytic trafficking. It has been found that the recycling ability of integrin ß1 through Rab11-controlled long loop pathways is directly associated with cancer invasion. Previous studies showed that gain-of-function mutant p53 regulates the Rab-coupling protein [RCP]-mediated integrin ß1 recycling by inactivating tumor suppressor TAp63. So, we were interested to investigate the involvement of miR-205 in this process. In the current study first, we evaluated that the lower expression of miR-205 in MDA-MB-231 cell line is associated with high motility and invasiveness. Further investigation corroborated that miR-205 directly targets RCP resulting in attenuated RCP-mediated integrin ß1 recycling. Overexpression of TAp63 validates our in vitro findings. To appraise the anti-metastatic role of miR-205, we developed two in vivo experimental models- xenograft-chick embryo and xenograft-immunosuppressed BALB/c mice. Our in vivo results support the negative effect of miR-205 on metastasis. Therefore, these findings advocate the tumor suppressor activity of miR-205 in breast cancer cells and suggest that in the future development of miR-205-targeting RNAi therapeutics could be a smart alternative approach to prevent the metastatic fate of the disease.


Assuntos
Neoplasias da Mama , MicroRNAs , Animais , Embrião de Galinha , Feminino , Humanos , Camundongos , Apoptose , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Integrina beta1/genética , Integrina beta1/metabolismo , MicroRNAs/genética , Invasividade Neoplásica , Metástase Neoplásica
4.
Fitoterapia ; 169: 105601, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37406886

RESUMO

Cancer continues to threat mortal alongside scientific community with burgeoning grasp. Most efforts directed to tame Cancer such as radiotherapy or chemotherapy, all came at a cost of severe side effects. The plant derived bioactive compounds on the other hand carries an inevitable advantage of being safer, bioavailable & less toxic compared to contemporary chemotherapeutics. Our strategic approach employed solvent extraction of Black Seed Oil (BSO) to highlight the orchestrated use of its oil soluble phytochemicals - Thymoquinone, Carvacrol & Trans-Anethole when used in cohort. These anti-cancer agents in unbelievably modest amounts present in BSO shows better potential to delineate migratory properties in breast cancer cells as compared to when treated individually. BSO was also observed to have apoptotic calibre when investigated in MDA-MB-231 and MCF-7 cell lines. We performed chemical characterization of the individual phytochemical as well as the oil in-whole to demonstrate the bioactive oil-soluble entities present in whole extract. BSO was observed to have significant anti-cancerous properties in cumulative proportion that is reportedly higher than the individual three components. Besides, this study also reports micro-RNA regulation on BSO administration, thereby playing a pivotal role in breast cancer alleviation. Thus, synergistic action of the integrants serves better combat force against breast cancer in the form of whole extract, hence aiming at a more lucrative paradigm while significantly regulating microRNAs associated with breast cancer migration and apoptosis.


Assuntos
Neoplasias da Mama , MicroRNAs , Nigella sativa , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Nigella sativa/química , Estrutura Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
6.
J Nutr Biochem ; 115: 109283, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36791995

RESUMO

One of the key biochemical features that distinguish a cancer cell from normal cells is its persistent pro-oxidative state that leads to intrinsic oxidative stress. Malignant cells have evolved sophisticated adaptation systems that involve high dependency on antioxidant functions and upregulation of pro-survival molecules to counteract the deleterious effects of reactive species and to maintain dynamic redox balance. This situation renders them vulnerable to further oxidative challenges by exogenous agents. In the present study, we advocated that pomegranate polyphenols act as pro-oxidants and trigger ROS-mediated apoptosis in cancer cells. With the help of both in vitro and in vivo models, we have established that pomegranate fruit extract (PFE) can cause a significant reduction in tumor proliferation while leaving normal tissues and cells unharmed. Administration of PFE (0.2% v/v) in Erhlich's ascites carcinoma-bearing mice for 3 weeks, inhibited the nuclear factor (erythroid-derived 2)-like 2-antioxidant response element signaling cascade, increased intracellular reactive oxygen species content, altered glutathione cycle thereby activating reactive oxygen species-induced apoptotic pathway in Erhlich's ascites carcinoma cells. Moreover, PFE mitigated epithelial to mesenchymal transition and migration in triple negative breast cancer cells (MDA-MB 231 cells) by down-regulating nuclear factor kappa light-chain-enhancer of activated B cells. Pre-treatment of tumor cells with N-acetyl cysteine protected these cells from undergoing PFE-induced apoptosis while siRNA-mediated silencing of Nuclear factor (erythroid-derived 2)-like 2 and nuclear factor kappa light-chain-enhancer of activated B cells in tumor cells increased the cytotoxic potential and pro-oxidative activity of PFE, indicating a clear role of these transcription factors in orchestrating the anticancer/pro-oxidative properties of PFE. The seminal findings provided may be exploited to develop potential therapeutic targets for selective killing of malignant cells.


Assuntos
Carcinoma , Punica granatum , Animais , Camundongos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/química , Espécies Reativas de Oxigênio/metabolismo , Frutas/química , Ascite , Polifenóis/farmacologia , Polifenóis/análise , Transição Epitelial-Mesenquimal , Estresse Oxidativo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Apoptose
7.
Apoptosis ; 28(3-4): 263-276, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36536258

RESUMO

Tumor cells always have the need to produce an increased amount of proteins in the cells. This elevated amount of proteins increases the pressure on the organelles of the cell such as the endoplasmic reticulum and compels it to increase its protein folding efficiency. However, it is by a matter of fact, that the amount of proteins synthesized outweighs the protein folding capacity of the ER which in turn switches on the UPR pathway by activating the three major molecular sensors and other signaling cascades, which helps in cell survival instead of instant death. However, if this pathway is active for a prolonged period of time the tumor cells heads toward apoptosis. Again, interestingly this is not the same as in case of non- tumorogenic cells. This exhibit a straight natural pathway for tumor cells-specific destruction which has a great implication in today's world where hormone therapies and chemo-therapies are non-effective for various types of breast cancer, a major type being Triple Negative Breast Cancer. Thus a detailed elucidation of the molecular involvement of the UPR pathway in breast cancer may open new avenues for management and attract novel chemotherapeutic targets providing better hopes to patients worldwide.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Estresse do Retículo Endoplasmático , Apoptose/genética , Resposta a Proteínas não Dobradas , Transdução de Sinais
8.
Environ Toxicol ; 37(1): 52-68, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34581487

RESUMO

Although comprehensive exertions have been made in late decades for treating advanced lung cancer with inclusive therapies but efficient anti-lung cancer therapeutics are statically inadequate in the clinics. Hence, compelling novel anti-lung cancer drugs are considerably desired. This backdrop enticed us to unveil anticancer efficacy of astrakurkurol, derivative of wild edible mushroom against lung cancer, whose effects have not yet been described. Mechanistic analysis disclosed that sensitizing effect of astrakurkurol is due to cell cycle arrest at G0/G1 phase, increased level of Fas, FADD, decreased ratio of Bax/Bcl-2, and increased cleaved form of caspase 9, 8, and 3. Apart from the induction of apoptosis, it was demonstrated for the first time that astrakurkurol induced an autophagic response as evidenced by the development of acidic vesicular organelles (AVOs) with up-regulation of beclin-1, Atg7, and downregulated p62. Apoptosis and autophagy can be sparked by the same stimuli, which was as evident from the astrakurkurol-induced inactivation of PI3K/AKT signaling. The thorough scanning of the mechanism of crosstalk between apoptosis and autophagy is requisite for prosperous anticancer remedy. Triterpenoid has evidently intensified cytotoxicity, induced apoptosis and autophagy on A549 cells. Besides astrakurkurol could also curb migration and regress the size of tumor in ex ovo xenograft model. All these findings put forth astrakurkurol as a convincing novel anti-cancer agent, for scrutinizing the lung cancer therapies and as a robust contender for future in vitro and in vivo analysis.


Assuntos
Adenocarcinoma de Pulmão , Agaricales , Neoplasias Pulmonares , Células A549 , Apoptose , Autofagia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt
9.
J Food Biochem ; 46(1): e14021, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34811765

RESUMO

Astraeus hygrometricus extensively been utilized by tribal people for long time. A triterpene, astrakurkurol has been isolated from A. hygrometricus but anticancer effect of this novel triterpene has imperceptibly been investigated. Motive of this research was to scrutinize its underlying apoptotic mechanism in HepG2 cells. Cytotoxicity studies demonstrated a selective effect of astrakurkurol with towering influence in HepG2 than Thle2 cells. The exposure of these triterpene-induced marked apoptotic morphological changes enhanced the rate of cell apoptosis and arrest cell cycle at G0/G1. Furthermore, these results are aided by decline in the expression of Bcl-2, Bcl-xL with an increase in the expression of p53, Bax, Fas, FADD together with the activation of caspase cascade. Astrakurkurol also displayed a remarkable anti-migratory capacity at a lower concentration. Altogether, studies explained anti-proliferative, pro-apoptotic, and anti-migratory efficacy of astrakurkurol on HepG2, composing a gripping challenge in the advancement of novel treatments against hepatocellular carcinoma. PRACTICAL APPLICATIONS: Mushrooms, the minuscule pharmaceutical factory, bear hundreds of novel elements with incredible biological attributes. Triterpenoids from mushrooms has been proven to bear potentials of curing cancer. This study highlights the cytotoxic and anti-migratory effects of novel triterpene in vitro in HepG2 cell, an HCC cell line. Astrakurkurol mediated cell death via both extrinsic and intrinsic apoptotic signaling. Utilization of astrakurkurol will provide a non-toxic substitute of chemotherapy and also uplift the value of forsaken taxon, Astraeus and boost the rural acceptance.


Assuntos
Agaricales , Carcinoma Hepatocelular , Neoplasias Hepáticas , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Folclore , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética
10.
Biomater Sci ; 9(24): 8285-8312, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34766965

RESUMO

Epidermal growth factor receptor (EGFR) normally over-expresses in non-small cell lung cancer (NSCLC) cells. Its mutations act as oncogenic drivers in the cellular signal transduction pathway, and induce the downstream activation of numerous key cellular events involved in cellular proliferation and survival. EGFR tyrosine kinase inhibitors (EGFR-TK inhibitors), such as gefitinib and erlotinib, have been used for a long time in the treatment of NSCLC. However, they fail to overcome the EGFR-TK mutation due to the acquisition of drug resistance. It is strongly believed that the epithelial-to-mesenchymal transition (EMT) is a key player for acquired resistance and consequent limitation of the clinical efficiency of EGFR-TKIs. Therefore, a new strategy needs to be developed to overcome the resistance in NSCLC. In this current study, we have disclosed for the first time the efficiency of transferrin-modified PLGA-thymoquinone-nanoparticles in combination with gefitinib (NP-dual-1, NP-dual-2 and NP-dual-3) towards gefitinib-resistant A549 cells. The gefitinib-resistant A549 cells (A549/GR) showed 12.3-fold more resistance to gefitinib in comparison to non-resistant A549 cells. The phenotypic alteration resembling spindle-cell shape and increased pseudopodia integuments featured the EMT phenomena in A549/GR cells. EMT in A549/GR was later coupled with the loss of Ecad and expansion of Ncad, along with upregulated vimentin expression, as compared to the control A549 cells. Moreover, the invasive nature and migration potential are more amplified in A549/GR cells. Pre-incubation of A549 cells with TGFß1 also initiated EMT, leading to drug resistance. Conversely, treatment of A549 or A549/GR cells with NP-dual-3 effectively retrieved the sensitivity to gefitinib, restricted the EMT phenomenon, and impaired the TGFß1-induced EMT. On unveiling the underlying mechanism of therapeutic action, we found that STAT3 and miR-21 were individually overexpressed in the A549/GR cells by transfection, and followed by treatment with NP-dual-3. Simultaneously, NP-dual-3 fragmented HIF1-α induced EMT in A549/GR cells and reduced the CSCs markers, viz., Oct-4, Sox-2, Nanog, and Aldh1. These data are self-sufficient to suggest that NP-dual-3 re-sensitizes the drug-resistant A549/GR cells to gefitinib, possibly by retrieving MET phenomena via modulation of STAT3/mir-21/Akt/PTEN/HIF1-α axis. Thus, TQ nanoparticles combined with TKI gefitinib may provide an effective platform to treat NSCLC.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzoquinonas , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Transferrina
11.
J Nutr Biochem ; 97: 108812, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34224820

RESUMO

It has been widely reported that cancer, along with its treatment regimens, cause severe toxicity in the host. A suitable agent having chemopreventive properties as well as capabilities of ameliorating tumor- and drug-induced toxicities is of imminent need. Pomegranate has been projected as an excellent anti-tumor, anti-inflammatory and anti-oxidant agent. In this study, for the first time, we delineated the exact signaling cascade by which dietary supplementation of pomegranate fruit extract (PFE) protects tumor-bearing mice from tumor-induced hepatotoxicity. Increased activities of serum Alanine transaminase, Aspartate transaminase, Lactate dehydrogenase and Alkaline phosphatase, as well as histological studies confirmed the establishment of a state of hepatic dysfunction in tumor-bearers. Further investigations revealed that increased hepatic reactive oxygen species content and glutathione depletion-initiated apoptosis in these hepatocytes as we observed an alteration in the apoptotic proteins. PFE supplementation in tumor-bearing mice, on the other hand, differentially modulated redox-sensitive transcription factors Nrf2 and NF-κB, ultimately decreasing tumor-induced hepatic oxidative damage and cell death. siRNA-mediated inhibition of Nrf2 and NF-κB completely abolished the hepato-protective activities of PFE while pre-treatment of tumor-conditioned hepatocytes with N-acetyl cysteine augmented the cyto-protective properties of PFE. The present study clearly identified Nrf2/NF-κB/glutathione axis as the key factor behind the hepatoprotective potential of PFE. These findings would add to the existing knowledge about cancer chemoprevention by dietary polyphenols and might lead to the application of pomegranate polyphenols as supplement to escalate the effectiveness of cancer therapy by protecting normal cells from cancer related toxicities.


Assuntos
Carcinoma de Ehrlich/complicações , Glutationa/metabolismo , Hepatopatias/prevenção & controle , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Polifenóis/administração & dosagem , Punica granatum , Animais , Antioxidantes/metabolismo , Carcinoma de Ehrlich/metabolismo , Citocinas/metabolismo , Suplementos Nutricionais , Feminino , Hepatócitos/fisiologia , Inflamação , Fígado/metabolismo , Hepatopatias/etiologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Camundongos , Estresse Oxidativo , Extratos Vegetais/administração & dosagem
12.
Biomater Sci ; 9(16): 5665-5690, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34259681

RESUMO

To date, most of the accessible therapeutic options are virtually non-responsive towards triple-negative breast cancer (TNBC) due to its highly aggressive and metastatic nature. Interestingly, chemotherapy reacts soundly in many TNBC cases compared to other types of breast cancer. However, the side effects of many chemotherapeutic agents are still under cross-examination, and thus prohibit their extensive uses. In this present study, we have developed a series of coumarin-dihydropyrimidinone conjugates (CDHPs) and subsequently their poly(lactic-co-glycolic acid) (PLGA)-PEG4000 mixed copolymer nanoparticles as excellent chemotherapeutic nanomedicine to control TNBC. Among all the synthesized CDHPs, CDHP-4 (prepared by the combination of EDCO with 3,4-difluorobenzaldehyde) showed excellent therapeutic effect on a wide variety of cancer cell lines, including TNBC. Besides, it can control the metastasis and stemness property of TNBC. Furthermore, the nano-encapsulation of CDHP-4 in a mixed polymer nanoparticle system (CDHP-4@PP-NPs) and simultaneous delivery showed much improved therapeutic efficacy at a much lower dose, and almost negligible side effects in normal healthy cells or organs. The effectiveness of the present therapeutic agent was observed both in intravenous and oral mode of administration in in vivo experiments. Moreover, on elucidating the molecular mechanism, we found that CDHP-4@PP-NPs could exhibit apoptotic, anti-migratory, as well as anti-stemness activity against TNBC cell lines through the downregulation of miR-138. We validated our findings in MDA-MB-231 xenograft chick embryos, as well as in 4T1-induced mammary tumor-bearing BALB/c mice models, and studied the bio-distribution of CDHP-4@PP-NPs on the basis of the photoluminescence property of nanoparticles. Our recent study, hence for the first time, unravels the synthesis of CDHP-4@PP-NPs and the molecular mechanism behind the anti-migration, anti-stemness and anti-tumor efficacy of the nanoparticles against the TNBC cells through the miR-138/p65/TUSC2 axis.


Assuntos
Cumarínicos , Nanopartículas , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Embrião de Galinha , Humanos , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteínas Supressoras de Tumor
13.
Biochim Biophys Acta Gen Subj ; 1865(3): 129841, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33412224

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) is the most aggressive form of breast cancer with limited treatment modalities. It is associated with high propensity of cancer recurrence. METHODS: UV Spectroscopy, FTIR, DLS, Zeta potential, TEM and SEM were employed to characterize nanoparticles. MTT assay, Wound healing assay, SEM, Immunocytochemistry analysis, Western blot, RT-PCR, mammosphere formation assay were employed to study apoptosis, cell migration and stemness. Tumor regression was studied in chick embryo xenograft and BALB/c mice model. RESULTS: Hylaluronic acid engrafted metformin loaded graphene oxide (HA-GO-Met) nanoparticles exhibited an anti-cancer efficacy at much lower dosage as compared to metformin alone. HA-GO-Met nanoparticles induced apoptosis and inhibited cell migration of TNBC cells by targeting miR-10b/PTEN axis via NFkB-p65. Upregulation of PTEN affected pAKT(473) expression that induced apoptosis. Cell migration was inhibited by reduction of pFAK/integrinß1 expressions. Treatment inhibited epithelial mesenchymal transition (EMT) and reduced stemness as evident from the increase in E-cadherin expression, inhibition of mammosphere formation and low expression levels of stemness markers including nanog, oct4 and sox2 as compared to control. Moreover, tumor regression was studied in chick embryo xenograft and BALB/c mice model. HA-GO-Met nanoparticle treatment reduced tumor load and nullified toxicity in peripheral organs imparted by tumor. CONCLUSIONS: HA-GO-Met nanoparticles exhibited an enormous anti-cancer efficacy in TNBC in vitro and in vivo. GENERAL SIGNIFICANCE: HA-GO-Met nanoparticles induced apoptosis and attenuated cell migration in TNBC. It nullified overall toxicity imparted by tumor load. It inhibited EMT and reduced stemness and thereby addressed the issue of cancer recurrence.


Assuntos
Antineoplásicos/farmacologia , Grafite/química , Receptores de Hialuronatos/genética , Ácido Hialurônico/química , Metformina/farmacologia , Nanopartículas/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Membrana Corioalantoide/efeitos dos fármacos , Membrana Corioalantoide/metabolismo , Membrana Corioalantoide/patologia , Portadores de Fármacos , Feminino , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Receptores de Hialuronatos/metabolismo , Metformina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , MicroRNAs/metabolismo , Terapia de Alvo Molecular , Nanopartículas/administração & dosagem , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
ACS Appl Bio Mater ; 4(12): 8259-8266, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-35005950

RESUMO

To realize a customizable biogenic delivery platform, herein we propose combining cell-derived extracellular vesicles (EVs) derived from breast cancer cell line MCF-7 with synthetic cationic liposomes using a fusogenic agent, polyethylene glycol (PEG). We performed a fluorescence resonance energy transfer (FRET)-based lipid-mixing assay with varying PEG 1000 concentrations (0%, 15%, and 30%) correlated with flow cytometry-based analysis and supported by dimensional analysis by dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM) to validate our fusion strategy. Our data revealed that these hybrid vesicles at a particular concentration of PEG (∼15%) improved the cellular delivery efficiency of a model siRNA molecule to the EV parental breast cancer cells, MCF-7, by factors of 2 and 4 compared to the loaded liposome and EV precursors, respectively. The critical rigidity/pliability balance of the hybrid systems fused by PEG seems to be playing a pivotal role in improving their delivery capability. This approach can provide clinically viable delivery solutions using EVs.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Cátions , Feminino , Humanos , Lipossomos , Polietilenoglicóis
15.
Sci Rep ; 10(1): 15443, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32963259

RESUMO

In the context of failure of treatment for non alcoholic fatty liver disease (NAFLD)-mediated systemic damages, recognition of novel and successful characteristic drug to combat these anomalous situations is earnestly required. The present study is aimed to evaluate protective value of ethanol extract of Coccinia grandis leaves (EECGL), naturally occurring medicinal plant, on NAFLD-mediated systemic damage induced by high lipid diet along with monosodium glutamate (HM)-fed rats. Our study uncovered that EECGL significantly ameliorates HM-induced hyperlipidemia, increased lipogenesis and metabolic disturbances (via up regulation of PPAR-α and PPAR-γ), oxidative stress (via reducing the generation of reactive oxygen species and regulating the redox-homeostasis) and inflammatory response (via regulating the pro-inflammatory and anti-inflammatory factors with concomitant down regulation of NF-kB, iNOS, TNF-α and up regulation of eNOS). Furthermore, EECGL significantly inhibited HM-induced increased population of cells in sub G0/G1 phase, decreased Bcl2 expression and thereby loss of mitochondrial membrane potential with over expression of Bax, p53, p21, activation of caspase 3 and 9 indicated the apoptosis and suppression of cell survival. It is perhaps the first comprehensive study with a mechanistic approach which provides a strong unique strategy for the management of HM-induced systemic damage with effective dose of EECGL.


Assuntos
Cucurbitaceae/química , Dieta Hiperlipídica/efeitos adversos , Hiperlipidemias/tratamento farmacológico , Inflamação/tratamento farmacológico , Síndrome Metabólica/tratamento farmacológico , Extratos Vegetais/farmacologia , Glutamato de Sódio/toxicidade , Animais , Biomarcadores/análise , Regulação da Expressão Gênica , Hiperlipidemias/etiologia , Hiperlipidemias/metabolismo , Hiperlipidemias/patologia , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Estresse Oxidativo , Ratos , Ratos Wistar
16.
Biochim Biophys Acta Gen Subj ; 1864(11): 129695, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32735937

RESUMO

BACKGROUND: Breast cancer intimidates the contemporary medical advances, attempting to revolutionize cancer therapeutics. While patients suffering an advanced breast cancer are dependent on mono drugs, yet the build out of resistance leading to treatment fails has become inevitable. METHODS: Cell viability Assay with MTT revealed the "IC50" concentrations of the drugs in both cancer as well as PBMC. Cell cycle arrest, flow cytometric ROS analysis & apoptosis evaluation pointed out the efficacy of the dual drug. Wound Healing, Transwell Migration & Immunocytochemistry indicated anti-migratory potential of TQ-Emo while expression patterns of Cl-Cas3, p53, Bax, Bcl2 & the stemness markers further vouched the potential of the combinatorial drug. Furthermore, validation of tumor inhibitory effect was earned by an ex-ovo xenograft model. RESULTS: Dual dosage enhanced apoptosis through ROS generation, anti- migratory effect by targeting FAK &Integrins, displaying effective stemness control by assessing regulatory proteins- Oct4, Sox2, Nanog, ALDH1/2. Ex-ovo xenograft model validated tumor regression. Our study thereby deals with devastating effects of cancer drug resistance while trying to abate enhanced migratory potential & stemness, utilizing the synergism of the combinable therapy. CONCLUSION: TQ/Emo inhibited breast cancer proliferation synergistically while enhancing cytotoxicity, inducing apoptosis on MCF-7 cells while curbing migration & stemness. GENERAL SIGNIFICANCE: Employment of the combinatorial phytochemicals, Thymoquinone & Emodin attempted to achieve deliverables like reduced cellular toxicity, drug resistance, anti-migratory potency & stemness. Besides, decreased p-FAK expression or regression in Mammosphere & tumor size in ex-ovo xenograft model is indicative of the better anti-tumorigenic potential of the dual formulation.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzoquinonas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Emodina/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Células MCF-7 , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Inibidores de Proteínas Quinases/farmacologia
17.
J Water Health ; 18(3): 306-313, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32589617

RESUMO

A novel reactor was designed and implemented for water purification using deep ultraviolet light emitting diodes (LEDs). The focus was on minimizing the number of LEDs required for effective germicidal action. Simulation studies were carried out on the flow of water as well as the irradiance of UV. Variation was made in the beam divergence of the UV sources and reflectivity of optical coatings used for photon recycling. Based on optimized reactor designs, water purification was carried out both in the static and flow-through configuration. Water from various sources was spiked with a known bacterial strain, exposure studies were carried out and germicidal effect was determined. Our results indicate that under optimal design, a 3 mL volume of water shows a three order inactivation using a single UV-LED in a static reactor in 180 s. For a flow-through geometry, only three LEDs were used in the reactor implementation, and a multi-pass procedure was used to purify 150 mL of water from an Escherichia coli CFU count of 4.3 × 104/mL to 12/mL. While slow, this process requires less than 2 W, and can be powered from rechargeable sources. Faster processes can be implanted using multiple such reactor units in parallel, and can be optimized to the requirement and power levels.


Assuntos
Desinfecção , Raios Ultravioleta , Purificação da Água , Escherichia coli , Microbiologia da Água
18.
Life Sci ; 253: 117731, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32353431

RESUMO

BACKGROUND: Very little is known about the role inflammation and mechanism(s) that enables the tumor to evade host's anti-tumor immune function during very initial days of tumor establishment. Our study focuses on the immune response and local inflammation specially the pro-inflammatory and immune modifier components that are responsible for tumor-induced immune-suppression, tumor-associated macrophages (TAM) at tumor microenvironment in mouse model from very early to late phase of tumor progression. METHODS: 1 × 105 Ascites tumor, EAC in Swiss albino or Sarcoma-180 (S-180) in Balb c mice strain were inoculated intra-peritonially and grouped into Control (0 day or no tumor), initial phase (3 day tumor), early (7 Day), Late (14 day) and terminal (21 day tumor) sets. T cell activity, tumor niche macrophage, inflammatory signatures were studied using Confocal microscopy, flowcytometry, ELISA, q-RT PCR and Western blot. RESULTS: We observed increased T cell infiltration at a very early stage of tumorigenesis in the tumor site with elevated percentage of activated/memory T cells. But increased cellular death and functional suppression of tumor site T cells during final stages. We observed increased infiltration of TAMs with skewed M2 phenotype. Increased chemokine receptor expression could be noted on these TAMs. Using HIF-1α inhibitor and prostaglandin receptor antagonists we demonstrated crucial role of these factor in functional alteration in TAMs. HIF-1α inhibition and also by prostaglandin receptor inhibition reduced signature pro-inflammatory gene expression, migration of macrophages and T cell suppression capacity of TAMs. We also demonstrated that PGE2 can induce HIF-1α activation in relatively less hypoxic microenvironment during early stages of tumor. CONCLUSION: Altogether, these findings strongly suggest link between prostaglandin mediated early HIF-1α activation and subsequent hypoxia induced HIF-1α activation that further enhances prostaglandin synthesis driving the recruitment and functional alteration of tumor site macrophages.


Assuntos
Carcinoma de Ehrlich/patologia , Dinoprostona/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/patologia , Sarcoma 180/patologia , Animais , Carcinoma de Ehrlich/imunologia , Movimento Celular , Progressão da Doença , Inflamação/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo , Sarcoma 180/imunologia , Linfócitos T/imunologia , Microambiente Tumoral/imunologia
19.
Biomater Sci ; 8(10): 2939-2954, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32319481

RESUMO

The development of new therapeutic strategies to target triple-negative breast cancer (TNBC) is in much demand to overcome the roadblocks associated with the existing treatment procedures. In this regard, therapies targeting the CD44 receptor have drawn attention for more than a decade. MicroRNAs (miRNAs) modulate post-transcriptional gene regulation and thus, the correction of specific miRNA alterations using miRNA mimics or antagomiRs is an emerging strategy to normalize the genetic regulation in the tumor microenvironment. It has been acknowledged that miR-34a is downregulated and miR-10b is upregulated in TNBC, which promotes tumorigenesis and metastatic dissemination. However, there are a few barriers related to miRNA delivery. Herein, we have introduced tailored mesoporous silica nanoparticles (MSNs) for the co-delivery of miR-34a-mimic and antisense-miR-10b. MSN was functionalized with a cationic basic side chain and then loaded with the dual combination to overexpress miR-34a and downregulate miR-10b simultaneously. Finally, the loaded MSNs were coated with an hyaluronic acid-appended PEG-PLGA polymer for specific targeting. The cellular uptake, release profile, and subsequent effect in TNBC cells were evaluated. In vitro and in vivo studies demonstrated high specificity in TNBC tumor targeting, leading to efficient tumor growth inhibition as well as the retardation of metastasis, which affirmed the clinical application potential of the system.


Assuntos
Técnicas de Transferência de Genes , MicroRNAs/genética , Neoplasias de Mama Triplo Negativas/terapia , Animais , Feminino , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/metabolismo , Nanopartículas/química , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Porosidade , Dióxido de Silício/química , Propriedades de Superfície , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Células Tumorais Cultivadas
20.
J Control Release ; 322: 357-374, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32243981

RESUMO

Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic subtype of breast cancer showing non-responsiveness to most available therapeutic options. Therefore, smart therapeutic approaches to selectively transport and target TNBCs are required. Herein, we developed thymoquinone (TQ)-loaded, hyaluronic acid (HA)-conjugated Pluronic® P123 and F127 copolymer nanoparticles (HA-TQ-Nps) as a selective drug-carrying vehicle to deliver anticancer phytochemical TQ to TNBC cells. The mean size of nanoparticles was around 19.3 ± 3.2 nm. and they were stable at room temperature up to 4 months. HA-TQ-Nps were immensely cytotoxic towards TNBC cells but did not show the toxic effect on normal cells. Detailed investigations also demonstrated its pro-apoptotic, anti-metastatic and anti-angiogenic activity. In-depth mechanistic studies highlighted that HA-TQ-Nps retarded cell migration of TNBC cells through up-regulation of microRNA-361 which in turn down-regulated Rac1 and RhoA mediated cell migration and also perturbed the cancer cell migration under the influence of the autocrine effect of VEGF-A. Moreover, HA-TQ-Np-treatment also perturbed tumor-induced vascularization by reducing the secretion of VEGF-A. The anti-metastatic and anti-angiogenic activity of HA-TQ-Nps was found to be evident in both MDA-MB-231 xenograft chick embryos and 4T1-mammary solid tumor model in syngeneic mice. Thus, an innovative targeted nano-therapeutic approach is being established to reduce the tumor burden and inhibit metastasis and angiogenesis simultaneously for better management of TNBC.


Assuntos
MicroRNAs , Nanopartículas , Neoplasias de Mama Triplo Negativas , Animais , Benzoquinonas , Linhagem Celular Tumoral , Embrião de Galinha , Humanos , Ácido Hialurônico , Camundongos , Poloxâmero , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...