Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sensors (Basel) ; 24(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732899

RESUMO

This comprehensive review investigates the transformative potential of sensor-driven digital twin technology in enhancing healthcare delivery within smart environments. We explore the integration of smart environments with sensor technologies, digital health capabilities, and location-based services, focusing on their impacts on healthcare objectives and outcomes. This work analyzes the foundational technologies, encompassing the Internet of Things (IoT), Internet of Medical Things (IoMT), machine learning (ML), and artificial intelligence (AI), that underpin the functionalities within smart environments. We also examine the unique characteristics of smart homes and smart hospitals, highlighting their potential to revolutionize healthcare delivery through remote patient monitoring, telemedicine, and real-time data sharing. The review presents a novel solution framework leveraging sensor-driven digital twins to address both healthcare needs and user requirements. This framework incorporates wearable health devices, AI-driven health analytics, and a proof-of-concept digital twin application. Furthermore, we explore the role of location-based services (LBS) in smart environments, emphasizing their potential to enhance personalized healthcare interventions and emergency response capabilities. By analyzing the technical advancements in sensor technologies and digital twin applications, this review contributes valuable insights to the evolving landscape of smart environments for healthcare. We identify the opportunities and challenges associated with this emerging field and highlight the need for further research to fully realize its potential to improve healthcare delivery and patient well-being.


Assuntos
Inteligência Artificial , Atenção à Saúde , Internet das Coisas , Telemedicina , Dispositivos Eletrônicos Vestíveis , Humanos , Telemedicina/métodos , Aprendizado de Máquina , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação
3.
Mhealth ; 10: 9, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38323150

RESUMO

Diabetes is one of the leading non-communicable diseases globally, adversely impacting an individual's quality of life and adding a considerable burden to the healthcare systems. The necessity for frequent blood glucose (BG) monitoring and the inconveniences associated with self-monitoring of BG, such as pain and discomfort, has motivated the development of non-invasive BG approaches. However, the current research progress is slow, and only a few BG self-monitoring devices have made considerable progress. Hence, we evaluate the available non-invasive glucose monitoring technologies validated against BG recordings to provide future research direction to design, develop, and deploy self-monitoring of BG with integrated emerging technologies. We searched five databases, Embase, MEDLINE, Proquest, Scopus, and Web of Science, to assess the non-invasive technology's scope in the diabetes management paradigm published from 2000 to 2020. A total of three approaches to non-invasive screening, including saliva, skin, and breath, were identified and discussed. We observed a statistical relationship between BG measurements obtained from non-invasive methods and standard clinical measures. Opportunities exist for future research to advance research progress and facilitate early technology adoption for healthcare practice. The results promise clinical validity; however, formulating regulatory guidelines could foresee the deployment of approved non-invasive BG monitoring technologies in healthcare practice. Further, research prospects are there to design, develop, and deploy integrated diabetes management systems with mobile technologies, data analytics, and the internet of things (IoT) to deliver a personalised monitoring system.

4.
ESC Heart Fail ; 11(1): 378-389, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38009405

RESUMO

AIMS: Heart failure is a serious condition that often goes undiagnosed in primary care due to the lack of reliable diagnostic tools and the similarity of its symptoms with other diseases. Non-invasive monitoring of heart rate variability (HRV), which reflects the activity of the autonomic nervous system, could offer a novel and accurate way to detect and manage heart failure patients. This study aimed to assess the feasibility of using machine learning techniques on HRV data as a non-invasive biomarker to classify healthy adults and those with heart failure. METHODS AND RESULTS: We used digitized electrocardiogram recordings from 54 adults with normal sinus rhythm and 44 adults categorized into New York Heart Association classes 1, 2, and 3, suffering from congestive heart failure. All recordings were sourced from the PhysioNet database. Following data pre-processing, we performed time-domain HRV analysis on all individual recordings, including root mean square of the successive difference in adjacent RR interval (RRi) (RMSSD), the standard deviation of RRi (SDNN, the NN stands for natural or sinus intervals), the standard deviation of the successive differences between successive RRi (SDSD), the number or percentage of RRi longer than 50 ms (NN50 and pNN50), and the average value of RRi [mean RR interval (mRRi)]. In our experimental classification performance evaluation, on the computed HRV parameters, we optimized hyperparameters and performed five-fold cross-validation using four machine learning classification algorithms: support vector machine, k-nearest neighbour (KNN), naïve Bayes, and decision tree (DT). We evaluated the prediction accuracy of these models using performance criteria, namely, precision, recall, specificity, F1 score, and overall accuracy. For added insight, we also presented receiver operating characteristic (ROC) plots and area under the ROC curve (AUC) values. The overall best performance accuracy of 77% was achieved when KNN and DT were trained on computed HRV parameters with a 5 min time window. KNN obtained an AUC of 0.77, while DT attained 0.78. Additionally, in the classification of severe congestive heart failure, KNN and DT had the best accuracy of 91%, with KNN achieving an AUC of 0.88 and DT obtaining 0.92. CONCLUSIONS: The results show that HRV can accurately predict severe congestive heart failure. The findings of this study could inform the use of machine learning approaches on non-invasive HRV, to screen congestive heart failure individuals in primary care.


Assuntos
Insuficiência Cardíaca , Adulto , Humanos , Frequência Cardíaca/fisiologia , Teorema de Bayes , Insuficiência Cardíaca/diagnóstico , Eletrocardiografia , Algoritmos
5.
Healthcare (Basel) ; 11(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37510477

RESUMO

E-learning has transformed the healthcare education system by providing healthcare professionals with training and development opportunities, regardless of their location. However, healthcare professionals in remote or rural areas face challenges such as limited access to educational resources, lack of reliable internet connectivity, geographical isolation, and limited availability of specialized training programs and instructors. These challenges hinder their access to e-learning opportunities and impede their professional development. To address this issue, a study was conducted to identify the factors that influence the effectiveness of e-learning in healthcare. A literature review was conducted, and two questionnaires were distributed to e-learning experts to assess primary variables and identify the most significant factor. The Fuzzy Analytic Network Process (Fuzzy ANP) was used to identify the importance of selected factors. The study found that success, satisfaction, availability, effectiveness, readability, and engagement are the main components ranked in order of importance. Success was identified as the most significant factor. The study results highlight the benefits of e-learning in healthcare, including increased accessibility, interactivity, flexibility, knowledge management, and cost efficiency. E-learning offers a solution to the challenges of professional development faced by healthcare professionals in remote or rural areas. The study provides insights into the factors that influence the effectiveness of e-learning in healthcare and can guide the development of future e-learning programs.

6.
JMIR Diabetes ; 7(2): e33264, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35727613

RESUMO

BACKGROUND: Diabetes is one of the leading noncommunicable chronic diseases globally. In people with diabetes, blood glucose levels need to be monitored regularly and managed adequately through healthy lifestyles and medications. However, various factors contribute to poor medication adherence. Smartphone apps can improve medication adherence in people with diabetes, but it is not clear which app features are most beneficial. OBJECTIVE: This study aims to systematically review and evaluate high-quality apps for diabetes medication adherence, which are freely available to the public in Android and Apple app stores and present the technical features of the apps. METHODS: We systematically searched Apple App Store and Google Play for apps that assist in diabetes medication adherence, using predefined selection criteria. We assessed apps using the Mobile App Rating Scale (MARS) and calculated the mean app-specific score (MASS) by taking the average of app-specific scores on 6 dimensions, namely, awareness, knowledge, attitudes, intention to change, help-seeking, and behavior change rated on a 5-point scale (1=strongly disagree and 5=strongly agree). We used the mean of the app's performance on these 6 dimensions to calculate the MASS. Apps that achieved a total MASS mean quality score greater than 4 out of 5 were considered to be of high quality in our study. We formulated a task-technology fit matrix to evaluate the apps for diabetes medication adherence. RESULTS: We identified 8 high-quality apps (MASS score≥4) and presented the findings under 3 main categories: characteristics of the included apps, app features, and diabetes medication adherence. Our framework to evaluate smartphone apps in promoting diabetes medication adherence considered physiological factors influencing diabetes and app features. On evaluation, we observed that 25% of the apps promoted high adherence and another 25% of the apps promoted moderate adherence. Finally, we found that 50% of the apps provided low adherence to diabetes medication. CONCLUSIONS: Our findings show that almost half of the high-quality apps publicly available for free did not achieve high to moderate medication adherence. Our framework could have positive implications for the future design and development of apps for patients with diabetes. Additionally, apps need to be evaluated using a standardized framework, and only those promoting higher medication adherence should be prescribed for better health outcomes.

7.
Sensors (Basel) ; 22(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35632195

RESUMO

Disease screening identifies a disease in an individual/community early to effectively prevent or treat the condition. COVID-19 has restricted hospital visits for screening and other healthcare services resulting in the disruption of screening for cancer, diabetes, and cardiovascular diseases. Smartphone technologies, coupled with built-in sensors and wireless technologies, enable the smartphone to function as a disease-screening and monitoring device with negligible additional costs and potentially higher quality results. Thus, we sought to evaluate the use of smartphone applications for disease screening and the acceptability of this technology in the medical and healthcare sectors. We followed a systematic review process using four databases, including Medline Complete, Web of Science, Embase, and Proquest. We included articles published in English examining smartphone application utilisation in disease screening. Further, we presented and discussed the primary outcomes of the research articles and their statistically significant value. The initial search yielded 1046 studies for the initial title and abstract screening. Of the 105 articles eligible for full-text screening, we selected nine studies and discussed them in detail under four main categories: an overview of the literature reviewed, participant characteristics, disease screening, and technology acceptance. According to our objective, we further evaluated the disease-screening approaches and classified them as clinically administered screening (33%, n = 3), health-worker-administered screening (33%, n = 3), and home-based screening (33%, n = 3). Finally, we analysed the technology acceptance among the users and healthcare practitioners. We observed a significant statistical relationship between smartphone applications and standard clinical screening. We also reviewed user acceptance of these smartphone applications. Hence, we set out critical considerations to provide equitable healthcare solutions without barriers when designing, developing, and deploying smartphone solutions. The findings may increase research opportunities for the evaluation of smartphone solutions as valid and reliable screening solutions.


Assuntos
COVID-19 , Aplicativos Móveis , Envio de Mensagens de Texto , COVID-19/diagnóstico , Atenção à Saúde , Humanos , Smartphone
8.
Healthcare (Basel) ; 9(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34356267

RESUMO

Technologies play an essential role in monitoring, managing, and self-management of chronic diseases. Since chronic patients rely on life-long healthcare systems and the current COVID-19 pandemic has placed limits on hospital care, there is a need to explore disease monitoring and management technologies and examine their acceptance by chronic patients. We systematically examined the use of smartphone applications (apps) in chronic disease monitoring and management in databases, namely, Medline, Web of Science, Embase, and Proquest, published from 2010 to 2020. Results showed that app-based weight management programs had a significant effect on healthy eating and physical activity (p = 0.002), eating behaviours (p < 0.001) and dietary intake pattern (p < 0.001), decreased mean body weight (p = 0.008), mean Body Mass Index (BMI) (p = 0.002) and mean waist circumference (p < 0.001). App intervention assisted in decreasing the stress levels (paired t-test = 3.18; p < 0.05). Among cancer patients, we observed a high acceptance of technology (76%) and a moderately positive correlation between non-invasive electronic monitoring data and questionnaire (r = 0.6, p < 0.0001). We found a significant relationship between app use and standard clinical evaluation and high acceptance of the use of apps to monitor the disease. Our findings provide insights into critical issues, including technology acceptance along with regulatory guidelines to be considered when designing, developing, and deploying smartphone solutions targeted for chronic patients.

9.
IEEE J Biomed Health Inform ; 18(1): 345-51, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24403433

RESUMO

The rapid expansion of mobile-based systems, the capabilities of smartphone devices, as well as the radio access and cellular network technologies are the wind beneath the wing of mobile health (mHealth). In this paper, the concept of biomedical sensing analyzer (BSA) is presented, which is a novel framework, devised for sensor-based mHealth applications. The BSA is capable of formulating the Quality of Service (QoS) measurements in an end-to-end sense, covering the entire communication path (wearable sensors, link-technology, smartphone, cell-towers, mobile-cloud, and the end-users). The characterization and formulation of BSA depend on a number of factors, including the deployment of application-specific biomedical sensors, generic link-technologies, collection, aggregation, and prioritization of mHealth data, cellular network based on the Long-Term Evolution (LTE) access technology, and extensive multidimensional delay analyses. The results are studied and analyzed in a LabView 8.5 programming environment.


Assuntos
Redes de Comunicação de Computadores , Tecnologia de Sensoriamento Remoto/métodos , Telemedicina/métodos , Simulação por Computador , Humanos , Razão Sinal-Ruído
10.
Artigo em Inglês | MEDLINE | ID: mdl-24111219

RESUMO

Technology assisted methods for medical diagnosis and biomedical health monitoring are rapidly shifting from classical invasive methods to handheld-based non-invasive approaches. Biomedical imagining is one of the most prominent practices of non-invasive mechanisms in medical applications. This paper considers the medical imaging schemes for Mobile Health (mHealth) applications and studies the feasibility of future mobile systems for accommodating image informatics capabilities.


Assuntos
Diagnóstico por Imagem/instrumentação , Telemedicina/instrumentação , Angiografia , Telefone Celular , Redes de Comunicação de Computadores , Computadores de Mão , Diagnóstico por Imagem/métodos , Radiação Eletromagnética , Desenho de Equipamento , Humanos , Imageamento por Ressonância Magnética , Mamografia , Informática Médica , Processamento de Sinais Assistido por Computador , Software , Técnica de Subtração , Telemedicina/métodos , Tomografia Computadorizada por Raios X , Tecnologia sem Fio , Raios X
11.
IEEE Trans Inf Technol Biomed ; 16(4): 586-97, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22453643

RESUMO

The number of wearable wireless sensors is expected to grow to 400 million by the year 2014, while the number of operational mobile subscribers has already passed the 5.2 billion mark in 2011. This growth results in an increasing number of mobile applications including: Machine-to-Machine (M2M) communications, Electronic-Health (eHealth), and Mobile-Health (mHealth). A number of emerging mobile applications that require 3G and 4G mobile networks for data transport relate to telemedicine, including establishing, maintaining, and transmitting health-related information, research, education, and training. This review paper takes a closer look at these applications, specifically with regard to the healthcare industry and their underlying link technologies. The authors believe that the BlackBerry platform and the associated infrastructure (i.e., BlackBerry Enterprise Server) is a logical and practical solution for eHealth, mHealth, sensor and M2M deployments, which are considered in this paper.


Assuntos
Redes de Comunicação de Computadores , Microcomputadores , Telemedicina , Telemetria , Telefone Celular , Segurança Computacional , Humanos , Informática Médica , Monitorização Ambulatorial , Software
12.
Artigo em Inglês | MEDLINE | ID: mdl-19162950

RESUMO

This paper examines the security requirements for eHealth (Electronic Health) records and the provided current and future technological solutions. This includes the Security and Privacy (S&P) requirements for diverse electronic health information, the current frameworks and standards maintaining proper handling (processing, storing, and transmitting) of such sensitive information and the related network architectures.


Assuntos
Segurança Computacional , Confidencialidade , Sistemas de Informação Administrativa , Sistemas Computadorizados de Registros Médicos/organização & administração , Humanos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...