Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Genome Biol ; 24(1): 140, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337297

RESUMO

BACKGROUND: In droplet-based single-cell and single-nucleus RNA-seq experiments, not all reads associated with one cell barcode originate from the encapsulated cell. Such background noise is attributed to spillage from cell-free ambient RNA or barcode swapping events. RESULTS: Here, we characterize this background noise exemplified by three scRNA-seq and two snRNA-seq replicates of mouse kidneys. For each experiment, cells from two mouse subspecies are pooled, allowing to identify cross-genotype contaminating molecules and thus profile background noise. Background noise is highly variable across replicates and cells, making up on average 3-35% of the total counts (UMIs) per cell and we find that noise levels are directly proportional to the specificity and detectability of marker genes. In search of the source of background noise, we find multiple lines of evidence that the majority of background molecules originates from ambient RNA. Finally, we use our genotype-based estimates to evaluate the performance of three methods (CellBender, DecontX, SoupX) that are designed to quantify and remove background noise. We find that CellBender provides the most precise estimates of background noise levels and also yields the highest improvement for marker gene detection. By contrast, clustering and classification of cells are fairly robust towards background noise and only small improvements can be achieved by background removal that may come at the cost of distortions in fine structure. CONCLUSIONS: Our findings help to better understand the extent, sources and impact of background noise in single-cell experiments and provide guidance on how to deal with it.


Assuntos
RNA , Análise de Célula Única , Animais , Camundongos , Análise de Sequência de RNA/métodos , RNA-Seq/métodos , RNA/genética , Genótipo , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos , Análise por Conglomerados
2.
Hum Mol Genet ; 32(18): 2773-2786, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37384417

RESUMO

De novo heterozygous loss-of-function mutations in phosphatase and tensin homolog (PTEN) are strongly associated with autism spectrum disorders; however, it is unclear how heterozygous mutations in this gene affect different cell types during human brain development and how these effects vary across individuals. Here, we used human cortical organoids from different donors to identify cell-type specific developmental events that are affected by heterozygous mutations in PTEN. We profiled individual organoids by single-cell RNA-seq, proteomics and spatial transcriptomics and revealed abnormalities in developmental timing in human outer radial glia progenitors and deep-layer cortical projection neurons, which varied with the donor genetic background. Calcium imaging in intact organoids showed that both accelerated and delayed neuronal development phenotypes resulted in similar abnormal activity of local circuits, irrespective of genetic background. The work reveals donor-dependent, cell-type specific developmental phenotypes of PTEN heterozygosity that later converge on disrupted neuronal activity.


Assuntos
Transtorno do Espectro Autista , Neurônios , Humanos , Neurônios/metabolismo , Diferenciação Celular , Organoides/metabolismo , Transtorno do Espectro Autista/genética , Mutação , PTEN Fosfo-Hidrolase/genética
3.
Nat Aging ; 3(3): 327-345, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37118429

RESUMO

Aging is a complex process involving transcriptomic changes associated with deterioration across multiple tissues and organs, including the brain. Recent studies using heterochronic parabiosis have shown that various aspects of aging-associated decline are modifiable or even reversible. To better understand how this occurs, we performed single-cell transcriptomic profiling of young and old mouse brains after parabiosis. For each cell type, we cataloged alterations in gene expression, molecular pathways, transcriptional networks, ligand-receptor interactions and senescence status. Our analyses identified gene signatures, demonstrating that heterochronic parabiosis regulates several hallmarks of aging in a cell-type-specific manner. Brain endothelial cells were found to be especially malleable to this intervention, exhibiting dynamic transcriptional changes that affect vascular structure and function. These findings suggest new strategies for slowing deterioration and driving regeneration in the aging brain through approaches that do not rely on disease-specific mechanisms or actions of individual circulating factors.


Assuntos
Células Endoteliais , Transcriptoma , Animais , Camundongos , Transcriptoma/genética , Envelhecimento/genética , Parabiose , Encéfalo
4.
Nat Biotechnol ; 41(2): 204-211, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36109685

RESUMO

Here we introduce a mostly natural sequencing-by-synthesis (mnSBS) method for single-cell RNA sequencing (scRNA-seq), adapted to the Ultima genomics platform, and systematically benchmark it against current scRNA-seq technology. mnSBS uses mostly natural, unmodified nucleotides and only a low fraction of fluorescently labeled nucleotides, which allows for high polymerase processivity and lower costs. We demonstrate successful application in four scRNA-seq case studies of different technical and biological types, including 5' and 3' scRNA-seq, human peripheral blood mononuclear cells from a single individual and in multiplex, as well as Perturb-Seq. Benchmarking shows that results from mnSBS-based scRNA-seq are very similar to those using Illumina sequencing, with minor differences in results related to the position of reads relative to annotated gene boundaries, owing to single-end reads of Ultima being closer to gene ends than reads from Illumina. The method is thus compatible with state-of-the-art scRNA-seq libraries independent of the sequencing technology. We expect mnSBS to be of particular utility for cost-effective large-scale scRNA-seq projects.


Assuntos
Perfilação da Expressão Gênica , Leucócitos Mononucleares , Humanos , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Análise da Expressão Gênica de Célula Única , Análise de Célula Única/métodos , Nucleotídeos
5.
Cell ; 185(20): 3770-3788.e27, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36179669

RESUMO

Realizing the full utility of brain organoids to study human development requires understanding whether organoids precisely replicate endogenous cellular and molecular events, particularly since acquisition of cell identity in organoids can be impaired by abnormal metabolic states. We present a comprehensive single-cell transcriptomic, epigenetic, and spatial atlas of human cortical organoid development, comprising over 610,000 cells, from generation of neural progenitors through production of differentiated neuronal and glial subtypes. We show that processes of cellular diversification correlate closely to endogenous ones, irrespective of metabolic state, empowering the use of this atlas to study human fate specification. We define longitudinal molecular trajectories of cortical cell types during organoid development, identify genes with predicted human-specific roles in lineage establishment, and uncover early transcriptional diversity of human callosal neurons. The findings validate this comprehensive atlas of human corticogenesis in vitro as a resource to prime investigation into the mechanisms of human cortical development.


Assuntos
Córtex Cerebral , Organoides , Diferenciação Celular , Córtex Cerebral/metabolismo , Humanos , Neurogênese , Neurônios , Organoides/metabolismo
6.
Nature ; 603(7901): 455-463, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35264797

RESUMO

Mutations in non-coding regulatory DNA sequences can alter gene expression, organismal phenotype and fitness1-3. Constructing complete fitness landscapes, in which DNA sequences are mapped to fitness, is a long-standing goal in biology, but has remained elusive because it is challenging to generalize reliably to vast sequence spaces4-6. Here we build sequence-to-expression models that capture fitness landscapes and use them to decipher principles of regulatory evolution. Using millions of randomly sampled promoter DNA sequences and their measured expression levels in the yeast Saccharomyces cerevisiae, we learn deep neural network models that generalize with excellent prediction performance, and enable sequence design for expression engineering. Using our models, we study expression divergence under genetic drift and strong-selection weak-mutation regimes to find that regulatory evolution is rapid and subject to diminishing returns epistasis; that conflicting expression objectives in different environments constrain expression adaptation; and that stabilizing selection on gene expression leads to the moderation of regulatory complexity. We present an approach for using such models to detect signatures of selection on expression from natural variation in regulatory sequences and use it to discover an instance of convergent regulatory evolution. We assess mutational robustness, finding that regulatory mutation effect sizes follow a power law, characterize regulatory evolvability, visualize promoter fitness landscapes, discover evolvability archetypes and illustrate the mutational robustness of natural regulatory sequence populations. Our work provides a general framework for designing regulatory sequences and addressing fundamental questions in regulatory evolution.


Assuntos
Deriva Genética , Modelos Genéticos , Evolução Biológica , DNA , Evolução Molecular , Regulação da Expressão Gênica , Mutação/genética , Fenótipo , Saccharomyces cerevisiae/genética
7.
Nature ; 602(7896): 268-273, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110736

RESUMO

Genetic risk for autism spectrum disorder (ASD) is associated with hundreds of genes spanning a wide range of biological functions1-6. The alterations in the human brain resulting from mutations in these genes remain unclear. Furthermore, their phenotypic manifestation varies across individuals7,8. Here we used organoid models of the human cerebral cortex to identify cell-type-specific developmental abnormalities that result from haploinsufficiency in three ASD risk genes-SUV420H1 (also known as KMT5B), ARID1B and CHD8-in multiple cell lines from different donors, using single-cell RNA-sequencing (scRNA-seq) analysis of more than 745,000 cells and proteomic analysis of individual organoids, to identify phenotypic convergence. Each of the three mutations confers asynchronous development of two main cortical neuronal lineages-γ-aminobutyric-acid-releasing (GABAergic) neurons and deep-layer excitatory projection neurons-but acts through largely distinct molecular pathways. Although these phenotypes are consistent across cell lines, their expressivity is influenced by the individual genomic context, in a manner that is dependent on both the risk gene and the developmental defect. Calcium imaging in intact organoids shows that these early-stage developmental changes are followed by abnormal circuit activity. This research uncovers cell-type-specific neurodevelopmental abnormalities that are shared across ASD risk genes and are finely modulated by human genomic context, finding convergence in the neurobiological basis of how different risk genes contribute to ASD pathology.


Assuntos
Transtorno do Espectro Autista , Predisposição Genética para Doença , Neurônios , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/patologia , Córtex Cerebral/citologia , Proteínas de Ligação a DNA/genética , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Histona-Lisina N-Metiltransferase/genética , Humanos , Neurônios/classificação , Neurônios/metabolismo , Neurônios/patologia , Organoides/citologia , Proteômica , RNA-Seq , Análise de Célula Única , Fatores de Transcrição/genética
8.
Genome Biol ; 22(1): 73, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663567

RESUMO

BACKGROUND: Many neurodegenerative diseases develop only later in life, when cells in the nervous system lose their structure or function. In many forms of neurodegenerative diseases, this late-onset phenomenon remains largely unexplained. RESULTS: Analyzing single-cell RNA sequencing from Alzheimer's disease (AD) and Huntington's disease (HD) patients, we find increased transcriptional heterogeneity in disease-state neurons. We hypothesize that transcriptional heterogeneity precedes neurodegenerative disease pathologies. To test this idea experimentally, we use juvenile forms (72Q; 180Q) of HD iPSCs, differentiate them into committed neuronal progenitors, and obtain single-cell expression profiles. We show a global increase in gene expression variability in HD. Autophagy genes become more stable, while energy and actin-related genes become more variable in the mutant cells. Knocking down several differentially variable genes results in increased aggregate formation, a pathology associated with HD. We further validate the increased transcriptional heterogeneity in CHD8+/- cells, a model for autism spectrum disorder. CONCLUSIONS: Overall, our results suggest that although neurodegenerative diseases develop over time, transcriptional regulation imbalance is present already at very early developmental stages. Therefore, an intervention aimed at this early phenotype may be of high diagnostic value.


Assuntos
Regulação da Expressão Gênica , Heterogeneidade Genética , Predisposição Genética para Doença , Modelos Biológicos , Doenças Neurodegenerativas/etiologia , Células-Tronco Pluripotentes/metabolismo , Adulto , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Patrimônio Genético , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , RNA-Seq , Análise de Célula Única/métodos
9.
Cell Rep ; 33(10): 108447, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33296651

RESUMO

The contribution and mechanism of cerebrovascular pathology in Alzheimer's disease (AD) pathogenesis are still unclear. Here, we show that venular and capillary cerebral endothelial cells (ECs) are selectively vulnerable to necroptosis in AD. We identify reduced cerebromicrovascular expression of murine N-acetyltransferase 1 (mNat1) in two AD mouse models and hNat2, the human ortholog of mNat1 and a genetic risk factor for type-2 diabetes and insulin resistance, in human AD. mNat1 deficiency in Nat1-/- mice and two AD mouse models promotes blood-brain barrier (BBB) damage and endothelial necroptosis. Decreased mNat1 expression induces lysosomal degradation of A20, an important regulator of necroptosis, and LRP1ß, a key component of LRP1 complex that exports Aß in cerebral ECs. Selective restoration of cerebral EC expression of mNAT1 delivered by adeno-associated virus (AAV) rescues cerebromicrovascular levels of A20 and LRP1ß, inhibits endothelial necroptosis and activation, ameliorates mitochondrial fragmentation, reduces Aß deposits, and improves cognitive function in the AD mouse model.


Assuntos
Doença de Alzheimer/metabolismo , Arilamina N-Acetiltransferase/metabolismo , Isoenzimas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Animais , Arilamina N-Acetiltransferase/genética , Transporte Biológico/fisiologia , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cérebro/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Humanos , Isoenzimas/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necroptose/fisiologia , Fragmentos de Peptídeos/metabolismo , Fatores de Transcrição/metabolismo
10.
Nature ; 583(7818): 819-824, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32699411

RESUMO

The thalamic reticular nucleus (TRN), the major source of thalamic inhibition, regulates thalamocortical interactions that are critical for sensory processing, attention and cognition1-5. TRN dysfunction has been linked to sensory abnormality, attention deficit and sleep disturbance across multiple neurodevelopmental disorders6-9. However, little is known about the organizational principles that underlie its divergent functions. Here we performed an integrative study linking single-cell molecular and electrophysiological features of the mouse TRN to connectivity and systems-level function. We found that cellular heterogeneity in the TRN is characterized by a transcriptomic gradient of two negatively correlated gene-expression profiles, each containing hundreds of genes. Neurons in the extremes of this transcriptomic gradient express mutually exclusive markers, exhibit core or shell-like anatomical structure and have distinct electrophysiological properties. The two TRN subpopulations make differential connections with the functionally distinct first-order and higher-order thalamic nuclei to form molecularly defined TRN-thalamus subnetworks. Selective perturbation of the two subnetworks in vivo revealed their differential role in regulating sleep. In sum, our study provides a comprehensive atlas of TRN neurons at single-cell resolution and links molecularly defined subnetworks to the functional organization of thalamocortical circuits.


Assuntos
Redes Reguladoras de Genes , Núcleos Talâmicos/citologia , Núcleos Talâmicos/metabolismo , Animais , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Hibridização in Situ Fluorescente , Metaloendopeptidases/metabolismo , Camundongos , Vias Neurais , Neurônios/metabolismo , Osteopontina/metabolismo , Técnicas de Patch-Clamp , RNA-Seq , Análise de Célula Única , Sono/genética , Sono/fisiologia , Núcleos Talâmicos/fisiologia , Transcriptoma
11.
Nat Biotechnol ; 38(6): 747-755, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32518403

RESUMO

Single-cell RNA sequencing (scRNA-seq) is the leading technique for characterizing the transcriptomes of individual cells in a sample. The latest protocols are scalable to thousands of cells and are being used to compile cell atlases of tissues, organs and organisms. However, the protocols differ substantially with respect to their RNA capture efficiency, bias, scale and costs, and their relative advantages for different applications are unclear. In the present study, we generated benchmark datasets to systematically evaluate protocols in terms of their power to comprehensively describe cell types and states. We performed a multicenter study comparing 13 commonly used scRNA-seq and single-nucleus RNA-seq protocols applied to a heterogeneous reference sample resource. Comparative analysis revealed marked differences in protocol performance. The protocols differed in library complexity and their ability to detect cell-type markers, impacting their predictive value and suitability for integration into reference cell atlases. These results provide guidance both for individual researchers and for consortium projects such as the Human Cell Atlas.


Assuntos
Análise de Sequência de RNA , Análise de Célula Única , Animais , Benchmarking , Linhagem Celular , Bases de Dados Genéticas , Genômica/métodos , Genômica/normas , Humanos , Camundongos , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/normas , Análise de Célula Única/métodos , Análise de Célula Única/normas
12.
Nat Biotechnol ; 38(6): 737-746, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32341560

RESUMO

The scale and capabilities of single-cell RNA-sequencing methods have expanded rapidly in recent years, enabling major discoveries and large-scale cell mapping efforts. However, these methods have not been systematically and comprehensively benchmarked. Here, we directly compare seven methods for single-cell and/or single-nucleus profiling-selecting representative methods based on their usage and our expertise and resources to prepare libraries-including two low-throughput and five high-throughput methods. We tested the methods on three types of samples: cell lines, peripheral blood mononuclear cells and brain tissue, generating 36 libraries in six separate experiments in a single center. To directly compare the methods and avoid processing differences introduced by the existing pipelines, we developed scumi, a flexible computational pipeline that can be used with any single-cell RNA-sequencing method. We evaluated the methods for both basic performance, such as the structure and alignment of reads, sensitivity and extent of multiplets, and for their ability to recover known biological information in the samples.


Assuntos
Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Software , Animais , Encéfalo/citologia , Células Cultivadas , Humanos , Leucócitos Mononucleares/citologia , Camundongos
14.
Eur J Paediatr Neurol ; 24: 129-133, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31928904

RESUMO

The four voltage-gated sodium channels SCN1/2/3/8A have been associated with heterogeneous types of developmental disorders, each presenting with disease specific temporal and cell type specific gene expression. Using single-cell RNA sequencing transcriptomic data from humans and mice, we observe that SCN1A is predominantly expressed in inhibitory neurons. In contrast, SCN2/3/8A are profoundly expressed in excitatory neurons with SCN2/3A starting prenatally, followed by SCN1/8A neonatally. In contrast to previous observations from low resolution RNA screens, we observe that all four genes are expressed in both excitatory and inhibitory neurons, however, exhibit differential expression strength. These findings provide molecular evidence, at single-cell resolution, to support the hypothesis that the excitatory/inhibitory (E/I) neuronal expression ratios of sodium channels are important regulatory mechanisms underlying brain homeostasis and neurological diseases. Modulating the E/I expression balance within cell types of sodium channels could serve as a potential strategy to develop targeted treatment for NaV-associated neuronal developmental disorders.


Assuntos
Encéfalo/metabolismo , Deficiências do Desenvolvimento/metabolismo , Neurônios/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Deficiências do Desenvolvimento/genética , Humanos , Camundongos , Canais de Sódio Disparados por Voltagem/genética
15.
Neuron ; 104(6): 1039-1055.e12, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31784286

RESUMO

Neuronal types in the central nervous system differ dramatically in their resilience to injury or other insults. Here we studied the selective resilience of mouse retinal ganglion cells (RGCs) following optic nerve crush (ONC), which severs their axons and leads to death of ∼80% of RGCs within 2 weeks. To identify expression programs associated with differential resilience, we first used single-cell RNA-seq (scRNA-seq) to generate a comprehensive molecular atlas of 46 RGC types in adult retina. We then tracked their survival after ONC; characterized transcriptomic, physiological, and morphological changes that preceded degeneration; and identified genes selectively expressed by each type. Finally, using loss- and gain-of-function assays in vivo, we showed that manipulating some of these genes improved neuronal survival and axon regeneration following ONC. This study provides a systematic framework for parsing type-specific responses to injury and demonstrates that differential gene expression can be used to reveal molecular targets for intervention.


Assuntos
Sobrevivência Celular/genética , Regeneração Nervosa/genética , Neuroproteção/genética , Células Ganglionares da Retina/fisiologia , Animais , Feminino , Masculino , Camundongos , Compressão Nervosa
16.
Nat Neurosci ; 22(10): 1696-1708, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31551601

RESUMO

The mammalian brain is complex, with multiple cell types performing a variety of diverse functions, but exactly how each cell type is affected in aging remains largely unknown. Here we performed a single-cell transcriptomic analysis of young and old mouse brains. We provide comprehensive datasets of aging-related genes, pathways and ligand-receptor interactions in nearly all brain cell types. Our analysis identified gene signatures that vary in a coordinated manner across cell types and gene sets that are regulated in a cell-type specific manner, even at times in opposite directions. These data reveal that aging, rather than inducing a universal program, drives a distinct transcriptional course in each cell population, and they highlight key molecular processes, including ribosome biogenesis, underlying brain aging. Overall, these large-scale datasets (accessible online at https://portals.broadinstitute.org/single_cell/study/aging-mouse-brain ) provide a resource for the neuroscience community that will facilitate additional discoveries directed towards understanding and modifying the aging process.


Assuntos
Envelhecimento/genética , Encéfalo/crescimento & desenvolvimento , Neurônios/fisiologia , Análise de Célula Única , Transcriptoma/genética , Animais , Encéfalo/citologia , Comunicação Celular/genética , Linhagem da Célula/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ribossomos/genética
17.
Nature ; 570(7762): 523-527, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31168097

RESUMO

Experimental models of the human brain are needed for basic understanding of its development and disease1. Human brain organoids hold unprecedented promise for this purpose; however, they are plagued by high organoid-to-organoid variability2,3. This has raised doubts as to whether developmental processes of the human brain can occur outside the context of embryogenesis with a degree of reproducibility that is comparable to the endogenous tissue. Here we show that an organoid model of the dorsal forebrain can reliably generate a rich diversity of cell types appropriate for the human cerebral cortex. We performed single-cell RNA-sequencing analysis of 166,242 cells isolated from 21 individual organoids, finding that 95% of the organoids generate a virtually indistinguishable compendium of cell types, following similar developmental trajectories and with a degree of organoid-to-organoid variability comparable to that of individual endogenous brains. Furthermore, organoids derived from different stem cell lines show consistent reproducibility in the cell types produced. The data demonstrate that reproducible development of the complex cellular diversity of the central nervous system does not require the context of the embryo, and that establishment of terminal cell identity is a highly constrained process that can emerge from diverse stem cell origins and growth environments.


Assuntos
Córtex Cerebral/citologia , Organoides/citologia , Técnicas de Cultura de Tecidos , Linhagem Celular , Córtex Cerebral/metabolismo , Feminino , Feto/citologia , Feto/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Organoides/metabolismo , Prosencéfalo/citologia , Prosencéfalo/metabolismo , RNA-Seq , Reprodutibilidade dos Testes , Análise de Célula Única , Fatores de Tempo , Técnicas de Cultura de Tecidos/normas , Transcriptoma/genética
18.
Nat Methods ; 15(12): 1126, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30459407

RESUMO

The original version of this paper contained an incorrect primer sequence. In the Methods subsection "Rampage libraries," the text for modification 3 stated that the reverse primer used for library indexing was 5'-CAAGCAGAAGACGGCATACGAGATXXXXXXXXGTGACTGGAGT-3'. The correct sequence of the oligonucleotide used is 5'-CAAGCAGAAGACGGCATACGAGATXXXXXXXXGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3'. This error has been corrected in the PDF and HTML versions of the paper.

19.
Nat Biomed Eng ; 2(7): 540-554, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30271673

RESUMO

Understanding neurological diseases requires tractable genetic systems. Engineered 3D neural tissues are an attractive choice, but how the cellular transcriptomic profiles in these tissues are affected by the encapsulating materials and are related to the human-brain transcriptome is not well understood. Here, we report the characterization of the effects of culturing conditions on the transcriptomic profiles of induced neuronal cells, as well as a method for the rapid generation of 3D co-cultures of neuronal and astrocytic cells from the same pool of human embryonic stem cells. By comparing the gene-expression profiles of neuronal cells in culture conditions relevant to the developing human brain, we found that modifying the degree of crosslinking of composite hydrogels can tune expression patterns so they correlate with those of specific brain regions and developmental stages. Moreover, by using single-cell sequencing, we show that our engineered tissues recapitulate transcriptional patterns of cell types in the human brain. The analysis of culturing conditions will inform the development of 3D neural tissues for use as tractable models of brain diseases.

20.
Cell ; 174(6): 1477-1491.e19, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30146158

RESUMO

Aging is a major risk factor for both genetic and sporadic neurodegenerative disorders. However, it is unclear how aging interacts with genetic predispositions to promote neurodegeneration. Here, we investigate how partial loss of function of TBK1, a major genetic cause for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) comorbidity, leads to age-dependent neurodegeneration. We show that TBK1 is an endogenous inhibitor of RIPK1 and the embryonic lethality of Tbk1-/- mice is dependent on RIPK1 kinase activity. In aging human brains, another endogenous RIPK1 inhibitor, TAK1, exhibits a marked decrease in expression. We show that in Tbk1+/- mice, the reduced myeloid TAK1 expression promotes all the key hallmarks of ALS/FTD, including neuroinflammation, TDP-43 aggregation, axonal degeneration, neuronal loss, and behavior deficits, which are blocked upon inhibition of RIPK1. Thus, aging facilitates RIPK1 activation by reducing TAK1 expression, which cooperates with genetic risk factors to promote the onset of ALS/FTD.


Assuntos
Apoptose , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Adulto , Idoso , Envelhecimento , Animais , Apoptose/efeitos dos fármacos , Axônios/metabolismo , Comportamento Animal , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Humanos , Quinase I-kappa B/metabolismo , Camundongos , Camundongos Knockout , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Medula Espinal/metabolismo , Estaurosporina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...