Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Top Med Chem ; 24(19): 1615-1634, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38616763

RESUMO

Alzheimer's disease (AD) is a multifactorial disorder resulting from the complex interaction between genetic, epigenetic, and environmental factors. It represents an impending epidemic and lacks effective pharmacological interventions. The emergence of high throughput sequencing techniques and comprehensive genome evaluation has uncovered a diverse spectrum of noncoding RNA (ncRNA) families. ncRNAs are the critical modulators of an eclectic array of biological processes and are now transpiring as imperative players in diagnosing and treating various diseases, including neurodegenerative disorders. Several ncRNAs are explicitly augmented in the brain, wherein they potentially regulate cognitive abilities and other functions of the central nervous system. Growing evidence suggests the substantial role of ncRNAs as modulators of tau phosphorylation, Aß production, neuroinflammation, and neuronal survival. It indicates their therapeutic relevance as a biomarker and druggable targets against AD. The current review summarizes the existing literature on the functional significance of ncRNAs in AD pathogenesis and its imminent implications in clinics.


Assuntos
Doença de Alzheimer , RNA não Traduzido , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Humanos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Animais
2.
Toxicology ; 504: 153791, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555994

RESUMO

Bisphenol A (BPA) is a synthetic chemical widely used as a monomer for producing polycarbonate plastics. The present investigation employed an in-silico approach to identify BPA-responsive genes and comprehend the biological functions affected using in vitro studies. A Comparative Toxicogenomics Database search identified 29 BPA-responsive genes in cervical cancer (CC). Twenty-nine genes were screened using published datasets, and thirteen of those showed differential expression between normal and CC samples. Protein-Protein Interaction Networks (PPIN) analysis identified BIRC5, CASP8, CCND1, EGFR, FGFR3, MTOR, VEGFA, DOC2B, WNT5A, and YY1 as hub genes. KM-based survival analysis identified that CCND, EGFR, VEGFA, FGFR3, DOC2B, and YY1 might affect CC patient survival. SiHa and CaSki cell proliferation, migration, and invasion were all considerably accelerated by BPA exposure. Changes in cell morphology, remodeling of the actin cytoskeleton, increased number and length of filopodia, elevated intracellular reactive oxygen species and calcium, and lipid droplet accumulation were noted upon BPA exposure. BPA treatment upregulated the expression of epithelial to mesenchymal transition pathway members and enhanced the nuclear translocation of CTNNB1. We showed that the enhanced migration and nuclear translocation of CTNNB1 upon BPA exposure is a calcium-dependent process. The present study identified potential BPA-responsive genes and provided novel insights into the biological effects and mechanisms affected by BPA in CC. Our study raises concern over the use of BPA.


Assuntos
Compostos Benzidrílicos , Movimento Celular , Proliferação de Células , Fenóis , Neoplasias do Colo do Útero , Humanos , Fenóis/toxicidade , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Compostos Benzidrílicos/toxicidade , Feminino , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Simulação por Computador , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Mapas de Interação de Proteínas , Transição Epitelial-Mesenquimal/efeitos dos fármacos
3.
Mol Oncol ; 18(6): 1608-1630, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38400534

RESUMO

Cervical cancer (CC) is a key contributor to cancer-related mortality in several countries. The identification of molecular markers and the underlying mechanism may help improve CC management. We studied the regulation and biological function of the chromosome 14 microRNA cluster (C14MC; miR-379/miR-656) in CC. Most C14MC members exhibited considerably lower expression in CC tissues and cell lines in The Cancer Genome Atlas (TCGA) cervical squamous cell carcinoma and endocervical adenocarcinoma patient cohorts. Bisulfite Sanger sequencing revealed hypermethylation of the C14MC promoter in CC tissues and cell lines. 5-aza-2 deoxy cytidine treatment reactivated expression of the C14MC members. We demonstrated that C14MC is a methylation-regulated miRNA cluster via artificial methylation and luciferase reporter assays. C14MC downregulation correlated with poor overall survival and may promote metastasis. C14MC activation via the lentiviral-based CRISPRa approach inhibited growth, proliferation, migration, and invasion; enhanced G2/M arrest; and induced senescence. Post-transcriptional regulatory network analysis of C14MC transcriptomic data revealed enrichment of key cancer-related pathways, such as metabolism, the cell cycle, and phosphatidylinositol 3-kinase (PI3K)-AKT signaling. Reduced cell proliferation, growth, migration, invasion, and senescence correlated with the downregulation of active AKT, MYC, and cyclin E1 (CCNE1) and the overexpression of p16, p21, and p27. We showed that C14MC miRNA activation increases reactive oxygen species (ROS) levels, intracellular Ca2+ levels, and lipid peroxidation rates, and inhibits epithelial-mesenchymal transition (EMT). C14MC targets pyruvate dehydrogenase kinase-3 (PDK3) according to the luciferase reporter assay. PDK3 is overexpressed in CC and is inversely correlated with C14MC. Both miR-494-mimic transfection and C14MC activation inhibited PDK3 expression. Reduced glucose uptake and lactate production, and upregulation of PDK3 upon C14MC activation suggest the potential role of these proteins in metabolic reprogramming. Finally, we showed that C14MC activation may inhibit EMT signaling. Thus, C14MC is a tumor-suppressive and methylation-regulated miRNA cluster in CC. Reactivation of C14MC can be useful in the management of CC.


Assuntos
Metilação de DNA , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Neoplasias do Colo do Útero , Feminino , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Metilação de DNA/genética , Genes Supressores de Tumor , MicroRNAs/genética , MicroRNAs/metabolismo , Família Multigênica , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-38062297

RESUMO

The HOXA9 transcription factor serves as a molecular orchestrator in cancer stemness, epithelial-mesenchymal transition (EMT), metastasis, and generation of the tumor microenvironment in hematological and solid malignancies. However, the multiple modes of regulation, multifaceted functions, and context-dependent interactions responsible for the dual role of HOXA9 as an oncogene or tumor suppressor in cancer remain obscure. Hence, unravelling its molecular complexities, binding partners, and interacting signaling molecules enables us to comprehend HOXA9-mediated transcriptional programs and molecular crosstalk. However, it is imperative to understand its central role in fundamental biological processes such as embryogenesis, foetus implantation, hematopoiesis, endothelial cell proliferation, and tissue homeostasis before designing targeted therapies. Indeed, it presents an enormous challenge for clinicians to selectively target its oncogenic functions or restore tumor-suppressive role without altering normal cellular functions. In addition to its implications in cancer, the present review also focuses on the clinical applications of HOXA9 in recurrence and drug resistance, which may provide a broader understanding beyond oncology, open new avenues for clinicians for accurate diagnoses, and develop personalized treatment strategies. Furthermore, we have also discussed the existing therapeutic options and accompanying challenges in HOXA9-targeted therapies in different cancer types.

5.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119505, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37286138

RESUMO

Bisphenol A (BPA) is a chemical partially soluble in water and exists in a solid state. Its structural similarity with estrogen makes it an endocrine-disrupting chemical. BPA can disrupt signaling pathways at very low doses and may cause organellar stress. According to in vitro and in vivo studies, BPA interacts with various cell surface receptors to cause organellar stress, producing free radicals, cellular toxicity, structural changes, DNA damage, mitochondrial dysfunction, cytoskeleton remodeling, centriole duplication, and aberrant changes in several cell signaling pathways. The current review summarizes the impact of BPA exposure on the structural and functional aspects of subcellular components of cells such as the nucleus, mitochondria, endoplasmic reticulum, lysosome, ribosome, Golgi apparatus, and microtubules and its consequent impact on human health.


Assuntos
Compostos Benzidrílicos , Estrogênios , Humanos , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Mitocôndrias
6.
Front Mol Biosci ; 10: 1131433, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025658

RESUMO

Introduction: Forkhead (FOX) transcription factors are involved in cell cycle control, cellular differentiation, maintenance of tissues, and aging. Mutation or aberrant expression of FOX proteins is associated with developmental disorders and cancers. FOXM1, an oncogenic transcription factor, is a promoter of cell proliferation and accelerated development of breast adenocarcinomas, squamous carcinoma of the head, neck, and cervix, and nasopharyngeal carcinoma. High FOXM1 expression is correlated with chemoresistance in patients treated with doxorubicin and Epirubicin by enhancing the DNA repair in breast cancer cells. Method: miRNA-seq identified downregulation of miR-4521 in breast cancer cell lines. Stable miR-4521 overexpressing breast cancer cell lines (MCF-7, MDA-MB-468) were developed to identify miR-4521 target gene and function in breast cancer. Results: Here, we showed that FOXM1 is a direct target of miR-4521 in breast cancer. Overexpression of miR-4521 significantly downregulated FOXM1 expression in breast cancer cells. FOXM1 regulates cell cycle progression and DNA damage response in breast cancer. We showed that miR-4521 expression leads to increased ROS levels and DNA damage in breast cancer cells. FOXM1 plays a critical role in ROS scavenging and promotes stemness which contributes to drug resistance in breast cancer. We observed that breast cancer cells stably expressing miR-4521 lead to cell cycle arrest, impaired FOXM1 mediated DNA damage response leading to increased cell death in breast cancer cells. Additionally, miR-4521-mediated FOXM1 downregulation perturbs cell proliferation, invasion, cell cycle progression, and epithelial-to-mesenchymal progression (EMT) in breast cancer. Discussion: High FOXM1 expression has been associated with radio and chemoresistance contributing to poor patient survival in multiple cancers, including breast cancer. Our study showed that FOXM1 mediated DNA damage response could be targeted using miR-4521 mimics as a novel therapeutic for breast cancer.

7.
Biochem Genet ; 61(5): 1898-1916, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36879084

RESUMO

The miR-200b/429 located at 1p36 is a highly conserved miRNA cluster emerging as a critical regulator of cervical cancer. Using publicly available miRNA expression data from TCGA and GEO followed by independent validation, we aimed to identify the association between miR-200b/429 expression and cervical cancer. miR-200b/429 cluster was significantly overexpressed in cancer samples compared to normal samples. miR-200b/429 expression did not correlate with patient survival; however, its overexpression correlated with histological type. Protein-protein interaction analysis of 90 target genes of miR-200b/429 identified EZH2, FLT1, IGF2, IRS1, JUN, KDR, SOX2, MYB, ZEB1, and TIMP2 as the top ten hub genes. PI3K-AKT and MAPK signaling pathways emerged as major target pathways of miR-200b/429 and their hub genes. Kaplan-Meier survival analysis showed the expression of seven miR-200b/429 target genes (EZH2, FLT1, IGF2, IRS1, JUN, SOX2, and TIMP2) to influence the overall survival of patients. The miR-200a-3p and miR-200b-5p could help predict cervical cancer with metastatic potential. The cancer hallmark enrichment analysis showed hub genes to promote growth, sustained proliferation, resistance to apoptosis, induction of angiogenesis, activation of invasion, and metastasis, enabling replicative immortality, evading immune destruction, and tumor-promoting inflammation. The drug-gene interaction analysis identified 182 potential drugs to interact with 27 target genes of miR-200b/429 with paclitaxel, doxorubicin, dabrafenib, bortezomib, docetaxel, ABT-199, eribulin, vorinostat, etoposide, and mitoxantrone emerging as the top ten best candidate drugs. Taken together, miR-200b/429 and associated hub genes can be helpful for prognostic application and clinical management of cervical cancer.


Assuntos
MicroRNAs , Neoplasias do Colo do Útero , Feminino , Humanos , Redes Reguladoras de Genes , Neoplasias do Colo do Útero/genética , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Biologia Computacional , Regulação Neoplásica da Expressão Gênica
8.
Free Radic Biol Med ; 201: 1-13, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-36913987

RESUMO

Mitochondria are biosynthetic and bioenergetic organelles that regulate many biological processes, including metabolism, oxidative stress, and cell death. Cervical cancer (CC) cells show impairments in mitochondrial structure and function and are linked with cancer progression. DOC2B is a tumor suppressor with anti-proliferative, anti-migratory, anti-invasive, and anti-metastatic function in CC. For the first time, we demonstrated the role of the DOC2B-mitochondrial axis with tumor growth regulatory functions in CC. We used DOC2B overexpression and knockdown model systems to show that DOC2B is localized to mitochondria and induces Ca2+-mediated lipotoxicity. DOC2B expression induced mitochondrial morphological changes with the subsequent reduction in mitochondrial DNA copy number, mitochondrial mass, and mitochondrial membrane potential. Intracellular and mitochondrial Ca2+, intracellular O.-2, and ATP levels were substantially elevated in the presence of DOC2B. DOC2B manipulation reduced glucose uptake, lactate production, and mitochondrial complex-IV activity. The presence of DOC2B significantly reduced the proteins associated with mitochondrial structure and biogenesis with the concomitant activation of AMPK signaling. Augmented lipid peroxidation (LPO) in the presence of DOC2B was a Ca2+-dependent process. Our findings demonstrated that DOC2B promotes lipid accumulation, oxidative stress, and LPO through intracellular Ca2+ overload, which may contribute to mitochondrial dysfunction and tumor-suppressive properties of DOC2B. We propose that the DOC2B-Ca2+-oxidative stress-LPO-mitochondrial axis could be targeted for confining CC. Further, the induction of lipotoxicity in tumor cells by activating DOC2B could serve as a novel therapeutic approach in CC.


Assuntos
Cálcio , Proteínas do Tecido Nervoso , Cálcio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Mitocôndrias/metabolismo , Transporte Biológico , Estresse Oxidativo
9.
Biochim Biophys Acta Rev Cancer ; 1878(1): 188840, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403923

RESUMO

Although there has been substantial improvement in the treatment modalities, cancer remains the major cause of fatality worldwide. Metastasis, recurrence, and resistance to oncological therapies are the leading causes of cancer mortality. Epithelial-mesenchymal transition (EMT) is a complex biological process that allows cancer cells to undergo morphological transformation into a mesenchymal phenotype to acquire invasive potential. It encompasses reversible and dynamic ontogenesis by neoplastic cells during metastatic dissemination. Hence, understanding the molecular landscape of EMT is imperative to identify a reliable clinical biomarker to combat metastatic spread. Accumulating evidence reveals the role of HOX (homeobox) cluster-embedded long non-coding RNAs (lncRNAs) in EMT and cancer metastasis. They play a crucial role in the induction of EMT, modulating diverse biological targets. The present review emphasizes the involvement of HOX cluster-embedded lncRNAs in EMT as a molecular sponge, chromatin remodeler, signaling regulator, and immune system modulator. Furthermore, the molecular mechanisms behind therapy resistance and the potential use of novel drugs targeting HOX cluster-embedded lncRNAs in the clinical management of distant metastasis will be discussed.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Genes Homeobox , Transdução de Sinais
10.
Environ Toxicol Pharmacol ; 96: 104010, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36334871

RESUMO

Bisphenol A (BPA) mimics estrogen and consequently suspected to be detrimental to female reproductive system. Biomonitoring confirms the BPA burden in body leading to a complex condition called polycystic ovarian syndrome (PCOS) which is frequently attributed to female infertility. Due to unclear precise molecular pathomechanisms of BPA in PCOS, we intend to examine the molecular mechanisms of the reproductive, endocrine, mitochondrial features, and cellular senescence in BPA-treated rats. We analyzed vaginal smears and ovarian follicles using microscope, assessed sex hormones by ELISA, analyzed BPA target gene expression by semi-quantitative RT-PCR, assessed senescence induction by ß-galactosidase staining and immunofluorescence in BPA-treated rats. Our data showed hormonal imbalance, impaired folliculogenesis, abnormal expression patterns of target genes, CDKN2A overexpression and enhanced ROS levels in BPA-treated rats. This study provides insights on the effects of BPA exposure on ovulatory, hormonal, mitochondrial dysfunction, and senescence that benefit in better understanding of PCOS induced by BPA.


Assuntos
Disruptores Endócrinos , Síndrome do Ovário Policístico , Humanos , Feminino , Ratos , Animais , Síndrome do Ovário Policístico/induzido quimicamente , Disruptores Endócrinos/toxicidade , Compostos Benzidrílicos/toxicidade , Sistema Endócrino , Mitocôndrias , Senescência Celular , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA