Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 22(4): 1056-1068, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38160724

RESUMO

BACKGROUND: Blood clots are primarily composed of red blood cells (RBCs), platelets/thrombocytes, and fibrin. Despite the similarities observed between mammals and zebrafish, the composition of fish thrombi is not as well known. OBJECTIVES: To analyze the formation of zebrafish blood clots ex vivo and arterial and venous thrombi in vivo. METHODS: Transgenic zebrafish lines and laser-mediated endothelial injury were used to determine the relative ratio of RBCs and thrombocytes in clots. Scanning electron and confocal microscopy provided high-resolution images of the structure of adult and larval clots. Adult and larval thrombocyte spreading on fibrinogen was evaluated ex vivo. RESULTS: RBCs were present in arterial and venous thrombi, making up the majority of cells in both circulations. However, bloodless mutant fish demonstrated that fibrin clots can form in vivo in the absence of blood cells. Scanning electron and confocal microscopy showed that larval and adult zebrafish thrombi and mammalian thrombi look surprisingly similar externally and internally, even though the former have nucleated RBCs and thrombocytes. Although adult thrombocytes spread on fibrinogen, we found that larval cells do not fully activate without the addition of plasma from adult fish, suggesting a developmental deficiency of a plasma activating factor. Finally, mutants lacking αIIbß3 demonstrated that this integrin mediates thrombocyte spreading on fibrinogen. CONCLUSION: Our data showed strong conservation of arterial and venous and clot/thrombus formation across species, including developmental regulation of thrombocyte function. This correlation supports the possibility that mammals also do not absolutely require circulating cells to form fibrin clots in vivo.


Assuntos
Hemostáticos , Tromboembolia , Trombose , Animais , Peixe-Zebra , Trombose/genética , Plaquetas , Fibrina/química , Fibrinogênio/genética , Mamíferos
2.
Arterioscler Thromb Vasc Biol ; 43(10): 1990-2007, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37650322

RESUMO

BACKGROUND: Platelets for transfusion are stored for 5 to 7 days. Previous studies have shown that HETE levels in the storage bag negatively correlate with platelet performance in vivo, suggesting that the dysregulation of bioactive lipid mediators may contribute to the storage lesion. In the current study, we sought to understand how genetic deletion and pharmacological inhibition of 12-LOX (12-lipoxygenase) affects platelets during storage and after transfusion. METHODS: Platelets from 12-LOX+/+ (wild-type [WT]) and 12-LOX-/- mice were stored for 24 and 48 hours and profiled using liquid chromatography-tandem mass spectrometry-multiple reaction monitoring or transfused into thrombocytopenic hIL4R (human interleukin 4 receptor)-transgenic mice. Platelet function was assessed by flow cytometry and in vivo thrombosis and hemostasis models. To test the role of the COX-1 (cyclooxygenase-1) pathway, donor mice were treated with acetylsalicylic acid. Human platelets were treated with the 12-LOX inhibitor, VLX-1005, or vehicle, stored, and transfused to NOD/SCID (nonobese diabetic/severe combined immunodeficiency) mice. RESULTS: Polyunsaturated fatty acids increased significantly in stored platelets from 12-LOX-/- mice, whereas oxylipin concentrations were significantly higher in WT platelets. After transfusion to thrombocytopenic mice, we observed significantly more baseline αIIbß3 integrin activation in 12-LOX-/- platelets than in WT platelets. Stored platelets from 12-LOX-/- mice occluded vessels significantly faster than stored WT platelets. In hemostasis models, significantly more stored 12-LOX-/- than WT platelets accumulated at the site of venous injury leading to reduced blood loss. Inhibition of COX-1 abrogated both increased integrin activation and thromboxane generation in stored 12-LOX-/- platelets, highlighting the critical role of this pathway for improved post-transfusion function. Consistent with our mouse studies, human platelets stored with VLX-1005, showed increased integrin activation compared with vehicle-treated platelets after transfusion. CONCLUSIONS: Deleting 12-LOX improves the post-transfusion function of stored murine platelets by increasing thromboxane generation through COX-1-dependent arachidonic acid metabolism. Future studies should determine the feasibility and safety of 12-LOX-inhibited platelets transfused to humans.


Assuntos
Araquidonato 12-Lipoxigenase , Plaquetas , Humanos , Camundongos , Animais , Araquidonato 12-Lipoxigenase/genética , Araquidonato 12-Lipoxigenase/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Plaquetas/metabolismo , Camundongos Transgênicos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Tromboxanos/metabolismo
3.
Blood ; 142(13): 1156-1166, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37506337

RESUMO

von Willebrand factor (VWF) mediates primary hemostasis and thrombosis in response to hydrodynamic forces. We previously showed that high shear promoted self-association of VWF into hyperadhesive strands, which can be attenuated by high-density lipoprotein (HDL) and apolipoprotein A-I. In this study, we show that low-density lipoprotein (LDL) binds VWF under shear and enhances self-association. Vortexing VWF in tubes resulted in its loss from the solution and deposition onto tube surfaces, which was prevented by HDL. At a stabilizing HDL concentration of 1.2 mg/mL, increasing concentrations of LDL progressively increased VWF loss, the effect correlating with the LDL-to-HDL ratio and not the absolute concentration of the lipoproteins. Similarly, HDL diminished deposition of VWF in a post-in-channel microfluidic device, whereas LDL increased both the rate and extent of strand deposition, with both purified VWF and plasma. Hypercholesterolemic human plasma also displayed accelerated VWF accumulation in the microfluidic device. The initial rate of accumulation correlated linearly with the LDL-to-HDL ratio. In Adamts13-/- and Adamts13-/-LDLR-/- mice, high LDL levels enhanced VWF and platelet adhesion to the myocardial microvasculature, reducing cardiac perfusion, impairing systolic function, and producing early signs of cardiomyopathy. In wild-type mice, high plasma LDL concentrations also increased the size and persistence of VWF-platelet thrombi in ionophore-treated mesenteric microvessels, exceeding the accumulation seen in similarly treated ADAMTS13-deficient mice that did not receive LDL infusion. We propose that targeting the interaction of VWF with itself and with LDL may improve the course of thrombotic microangiopathies, atherosclerosis, and other disorders with defective microvascular circulation.


Assuntos
Trombose , Fator de von Willebrand , Camundongos , Humanos , Animais , Fator de von Willebrand/metabolismo , Lipoproteínas LDL , Trombose/metabolismo , Hemostasia , Adesividade Plaquetária , Proteína ADAMTS13
4.
Nat Commun ; 14(1): 2177, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100783

RESUMO

Current treatments to prevent thrombosis, namely anticoagulants and platelets antagonists, remain complicated by the persistent risk of bleeding. Improved therapeutic strategies that diminish this risk would have a huge clinical impact. Antithrombotic agents that neutralize and inhibit polyphosphate (polyP) can be a powerful approach towards such a goal. Here, we report a design concept towards polyP inhibition, termed macromolecular polyanion inhibitors (MPI), with high binding affinity and specificity. Lead antithrombotic candidates are identified through a library screening of molecules which possess low charge density at physiological pH but which increase their charge upon binding to polyP, providing a smart way to enhance their activity and selectivity. The lead MPI candidates demonstrates antithrombotic activity in mouse models of thrombosis, does not give rise to bleeding, and is well tolerated in mice even at very high doses. The developed inhibitor is anticipated to open avenues in thrombosis prevention without bleeding risk, a challenge not addressed by current therapies.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Trombose , Camundongos , Animais , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Ligantes , Trombose/tratamento farmacológico , Trombose/prevenção & controle , Anticoagulantes/efeitos adversos , Hemorragia/induzido quimicamente , Hemorragia/prevenção & controle , Hemorragia/tratamento farmacológico , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico
5.
Nat Commun ; 14(1): 2462, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117163

RESUMO

The combination of inflammation and thrombosis is a hallmark of many cardiovascular diseases. Under such conditions, platelets are recruited to an area of inflammation by forming platelet-leukocyte aggregates via interaction of PSGL-1 on leukocytes and P-selectin on activated platelets, which can bind to the endothelium. While particulate drug carriers have been utilized to passively redirect leukocytes from areas of inflammation, the downstream impact of these carriers on platelet accumulation in thromboinflammatory conditions has yet to be studied. Here, we explore the ability of polymeric particles to divert platelets away from inflamed blood vessels both in vitro and in vivo. We find that untargeted and targeted micron-sized polymeric particles can successfully reduce platelet adhesion to an inflamed endothelial monolayer in vitro in blood flow systems and in vivo in a lipopolysaccharide-induced, systemic inflammation murine model. Our data represent initial work in developing cargo-free, anti-platelet therapeutics specifically for conditions of thromboinflammation.


Assuntos
Neutrófilos , Trombose , Humanos , Animais , Camundongos , Neutrófilos/metabolismo , Inflamação/metabolismo , Tromboinflamação , Trombose/metabolismo , Plaquetas/metabolismo , Leucócitos/metabolismo , Selectina-P/metabolismo
6.
Blood ; 141(7): 725-742, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36493338

RESUMO

Coronavirus-associated coagulopathy (CAC) is a morbid and lethal sequela of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. CAC results from a perturbed balance between coagulation and fibrinolysis and occurs in conjunction with exaggerated activation of monocytes/macrophages (MO/Mφs), and the mechanisms that collectively govern this phenotype seen in CAC remain unclear. Here, using experimental models that use the murine betacoronavirus MHVA59, a well-established model of SARS-CoV-2 infection, we identify that the histone methyltransferase mixed lineage leukemia 1 (MLL1/KMT2A) is an important regulator of MO/Mφ expression of procoagulant and profibrinolytic factors such as tissue factor (F3; TF), urokinase (PLAU), and urokinase receptor (PLAUR) (herein, "coagulopathy-related factors") in noninfected and infected cells. We show that MLL1 concurrently promotes the expression of the proinflammatory cytokines while suppressing the expression of interferon alfa (IFN-α), a well-known inducer of TF and PLAUR. Using in vitro models, we identify MLL1-dependent NF-κB/RelA-mediated transcription of these coagulation-related factors and identify a context-dependent, MLL1-independent role for RelA in the expression of these factors in vivo. As functional correlates for these findings, we demonstrate that the inflammatory, procoagulant, and profibrinolytic phenotypes seen in vivo after coronavirus infection were MLL1-dependent despite blunted Ifna induction in MO/Mφs. Finally, in an analysis of SARS-CoV-2 positive human samples, we identify differential upregulation of MLL1 and coagulopathy-related factor expression and activity in CD14+ MO/Mφs relative to noninfected and healthy controls. We also observed elevated plasma PLAU and TF activity in COVID-positive samples. Collectively, these findings highlight an important role for MO/Mφ MLL1 in promoting CAC and inflammation.


Assuntos
COVID-19 , Histona-Lisina N-Metiltransferase , Animais , Humanos , Camundongos , COVID-19/complicações , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Inflamação/metabolismo , Monócitos/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , SARS-CoV-2/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
7.
Front Pharmacol ; 13: 902269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105190

RESUMO

Endothelial inflammation is an important pathophysiological driving force in various acute and chronic inflammatory diseases. High-density lipoproteins (HDLs) play critical roles in regulating endothelial functions and resolving endothelial inflammation. In the present study, we developed synthetic HDLs (sHDLs) which actively target inflamed endothelium through conjugating vascular cell adhesion protein 1 (VCAM-1) specific VHPK peptide. The active targeting of VHPK-sHDLs was confirmed in vitro on TNF-α activated endothelial cells. VHPK-sHDLs presented potent anti-inflammatory efficacies in vitro through the reduction of proinflammatory cytokine production and inhibition of leukocyte adhesion to activated endothelium. VHPK-sHDLs showed increased binding on inflamed vessels and alleviated LPS-induced lung inflammation in vivo. The activated endothelium-targeted sHDLs may be further optimized to resolve endothelial inflammation in various inflammatory diseases.

8.
J Vasc Surg Venous Lymphat Disord ; 10(1): 211-220, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33872819

RESUMO

BACKGROUND: This study evaluated E-selectin inhibition with GMI-1271 (Uproleselan [GMI]) alone and in combination with the standard of care low-molecular-weight heparin (LMWH) to improve vein recanalization, decrease vein wall inflammation and protect against adverse bleeding in a primate model. We sought to examine this novel treatment of venous thrombosis. METHODS: Using a well-documented primate animal model, iliac vein thrombosis was induced by balloon occlusion of the iliac vein for 6 hours. Starting on day 2 after thrombosis, animals began treatment in two phases. In phase one, nontreated controls received no treatment (n = 5) vs animals treated with the E-selectin inhibitor GMI, 25 mg/kg, subcutaneous (SC), once daily (n = 4) for 21 days (previously published data). In phase two, animals were treated with GMI plus a combination of LMWH 1.5 mg/kg or 40 mg (GMI + LMWHc) SC once daily (n = 8) for 19 days; and animals treated with LMWH 1.5 mg/kg or 40 mg (LMWHc) SC once daily (n = 6) for 19 days. Animals were evaluated by magnetic resonance venography for vein recanalization and inflammation by gadolinium extravasation, duplex ultrasound, coagulation tests (thromboelastography, bleeding time, prothrombin time, activated partial thromboplastin time, fibrinogen) and complete blood count at baseline, days 2, 7, 14, and 21 at euthanasia. Statistical analysis included using unpaired t test with Welch's correction for direct comparisons and one-way analysis of variance for comparison between the groups. RESULTS: Percent vein recanalization by magnetic resonance venography was highest in the GMI alone group followed by GMI + LMWHc, both significantly different from control. On ultrasound examination, animals treated with GMI alone had no decrease in open vein lumen by day 21, whereas decreases were observed in groups GMI + LMWHc (-26%), LMWHc (-27%), and controls (-80%). Vein wall inflammation decreased significantly in all treated groups. Intimal fibrosis and intimal thickness was best preserved in the GMI alone group. An analysis of total vein wall collagen revealed a trend in all treatment groups of decreasing vein wall collagen. No clinically significant bleeding events were noted in any group. The LMWH groups trended to have prolonged coagulation test values, whereas E-selectin inhibition with GMI did not cause clinically significant changes in coagulation measures. CONCLUSIONS: Treatment with E-selectin inhibition results in improved vein recanalization, a decrease in vein wall inflammation and vein wall intimal thickness and fibrosis, with no changes in markers of coagulation. E-selectin inhibition with GMI alone is superior to E-selectin inhibition combined with LMWH, LMWH alone, and no treatment in this deep vein thrombosis model of iliac vein thrombosis.


Assuntos
Anticoagulantes/uso terapêutico , Selectina E/antagonistas & inibidores , Glicolipídeos/uso terapêutico , Heparina de Baixo Peso Molecular/uso terapêutico , Trombose Venosa/tratamento farmacológico , Animais , Papio
9.
Sci Rep ; 11(1): 13170, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162972

RESUMO

Gene targeting of Cdc42 GTPase has been shown to inhibit platelet activation. In this study, we investigated a hypothesis that inhibition of Cdc42 activity by CASIN, a small molecule Cdc42 Activity-Specific INhibitor, may down regulate platelet activation and thrombus formation. We investigated the effects of CASIN on platelet activation in vitro and thrombosis in vivo. In human platelets, CASIN, but not its inactive analog Pirl7, blocked collagen induced activation of Cdc42 and inhibited phosphorylation of its downstream effector, PAK1/2. Moreover, addition of CASIN to washed human platelets inhibited platelet spreading on immobilized fibrinogen. Treatment of human platelets with CASIN inhibited collagen or thrombin induced: (a) ATP secretion and platelet aggregation; and (b) phosphorylation of Akt, ERK and p38-MAPK. Pre-incubation of platelets with Pirl7, an inactive analog of CASIN, failed to inhibit collagen induced aggregation. Washing of human platelets after incubation with CASIN eliminated its inhibitory effect on collagen induced aggregation. Intraperitoneal administration of CASIN to wild type mice inhibited ex vivo aggregation induced by collagen but did not affect the murine tail bleeding times. CASIN administration, prior to laser-induced injury in murine cremaster muscle arterioles, resulted in formation of smaller and unstable thrombi compared to control mice without CASIN treatment. These data suggest that pharmacologic targeting of Cdc42 by specific and reversible inhibitors may lead to the discovery of novel antithrombotic agents.


Assuntos
Carbazóis/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Trombose/prevenção & controle , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Músculos Abdominais/irrigação sanguínea , Trifosfato de Adenosina/metabolismo , Animais , Arteríolas , Carbazóis/administração & dosagem , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Lasers , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Selectina-P/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores
10.
Sci Rep ; 11(1): 11663, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083615

RESUMO

The interaction of platelet GPIbα with von Willebrand factor (VWF) is essential to initiate platelet adhesion and thrombosis, particularly under high shear stress conditions. However, no drug targeting GPIbα has been developed for clinical practice. Here we characterized anfibatide, a GPIbα antagonist purified from snake (Deinagkistrodon acutus) venom, and evaluated its interaction with GPIbα by surface plasmon resonance and in silico modeling. We demonstrated that anfibatide interferds with both VWF and thrombin binding, inhibited ristocetin/botrocetin- and low-dose thrombin-induced human platelet aggregation, and decreased thrombus volume and stability in blood flowing over collagen. In a single-center, randomized, and open-label phase I clinical trial, anfibatide was administered intravenously to 94 healthy volunteers either as a single dose bolus, or a bolus followed by a constant rate infusion of anfibatide for 24 h. Anfibatide inhibited VWF-mediated platelet aggregation without significantly altering bleeding time or coagulation. The inhibitory effects disappeared within 8 h after drug withdrawal. No thrombocytopenia or anti-anfibatide antibodies were detected, and no serious adverse events or allergic reactions were observed during the studies. Therefore, anfibatide was well-tolerated among healthy subjects. Interestingly, anfibatide exhibited pharmacologic effects in vivo at concentrations thousand-fold lower than in vitro, a phenomenon which deserves further investigation.Trial registration: Clinicaltrials.gov NCT01588132.


Assuntos
Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Venenos de Crotalídeos/uso terapêutico , Fibrinolíticos/uso terapêutico , Lectinas Tipo C/uso terapêutico , Complexo Glicoproteico GPIb-IX de Plaquetas/antagonistas & inibidores , Venenos de Serpentes/uso terapêutico , Animais , Coagulação Sanguínea/efeitos dos fármacos , Venenos de Crotalídeos/química , Venenos de Crotalídeos/isolamento & purificação , Venenos de Crotalídeos/farmacocinética , Crotalinae , Fibrinolíticos/química , Fibrinolíticos/isolamento & purificação , Fibrinolíticos/farmacocinética , Voluntários Saudáveis , Humanos , Lectinas Tipo C/química , Lectinas Tipo C/isolamento & purificação , Modelos Moleculares , Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Contagem de Plaquetas , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Ligação Proteica , Conformação Proteica , Ristocetina/farmacologia , Venenos de Serpentes/química , Venenos de Serpentes/isolamento & purificação , Venenos de Serpentes/farmacocinética , Relação Estrutura-Atividade , Trombina/farmacologia , Trombose/prevenção & controle , Fator de von Willebrand/química , Fator de von Willebrand/metabolismo
11.
Clin Appl Thromb Hemost ; 27: 10760296211018510, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34047195

RESUMO

Uncontrolled bleeding associated with trauma and surgery is the leading cause of preventable death. Batroxobin, a snake venom-derived thrombin-like serine protease, has been shown to clot fibrinogen by cleaving fibrinopeptide A in a manner distinctly different from thrombin, even in the presence of heparin. The biochemical properties of batroxobin and its effect on coagulation have been well characterized in vitro. However, the efficacy of batroxobin on hemostatic clot formation in vivo is not well studied due to the lack of reliable in vivo hemostasis models. Here, we studied the efficacy of batroxobin and slounase, a batroxobin containing activated factor X, on hemostatic clot composition and bleeding using intravital microcopy laser ablation hemostasis models in micro and macro vessels and liver puncture hemostasis models in normal and heparin-induced hypocoagulant mice. We found that prophylactic treatment in wild-type mice with batroxobin, slounase and activated factor X significantly enhanced platelet-rich fibrin clot formation following vascular injury. In heparin-treated mice, batroxobin treatment resulted in detectable fibrin formation and a modest increase in hemostatic clot size, while activated factor X had no effect. In contrast, slounase treatment significantly enhanced both platelet recruitment and fibrin formation, forming a stable clot and shortening bleeding time and blood loss in wild-type and heparin-treated hypocoagulant mice. Our data demonstrate that, while batroxobin enhances fibrin formation, slounase was able to enhance hemostasis in normal mice and restore hemostasis in hypocoagulant conditions via the enhancement of fibrin formation and platelet activation, indicating that slounase is more effective in controlling hemorrhage.


Assuntos
Batroxobina/uso terapêutico , Testes de Coagulação Sanguínea/métodos , Coagulação Sanguínea/efeitos dos fármacos , Hemorragia/tratamento farmacológico , Hemostáticos/uso terapêutico , Animais , Batroxobina/farmacologia , Hemostáticos/farmacologia , Humanos , Masculino , Camundongos
12.
Sci Adv ; 7(17)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33883129

RESUMO

Vascular-targeted drug carriers must localize to the wall (i.e., marginate) and adhere to a diseased endothelium to achieve clinical utility. The particle size has been reported as a critical physical property prescribing particle margination in vitro and in vivo blood flows. Different transport process steps yield conflicting requirements-microparticles are optimal for margination, but nanoparticles are better for intracellular or tissue delivery. Here, we evaluate deformable hydrogel microparticles as carriers for transporting nanoparticles to a diseased vascular wall. Depending on microparticle modulus, nanoparticle-loaded poly(ethylene glycol)-based hydrogel microparticles delivered significantly more 50-nm nanoparticles to the vessel wall than freely injected nanoparticles alone, resulting in >3000% delivery increase. This work demonstrates the benefit of optimizing microparticles' efficient margination to enhance nanocarriers' transport to the vascular wall.

13.
Thromb Haemost ; 121(7): 931-943, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33545736

RESUMO

Oxidative stress plays crucial roles in initiating platelet apoptosis that facilitates the progression of cardiovascular diseases (CVDs). Protocatechuic acid (PCA), a major metabolite of anthocyanin cyanidin-3-O-ß-glucoside (Cy-3-g), exerts cardioprotective effects. However, underlying mechanisms responsible for such effects remain unclear. Here, we investigate the effect of PCA on platelet apoptosis and the underlying mechanisms in vitro. Isolated human platelets were treated with hydrogen peroxide (H2O2) to induce apoptosis with or without pretreatment with PCA. We found that PCA dose-dependently inhibited H2O2-induced platelet apoptosis by decreasing the dissipation of mitochondrial membrane potential, activation of caspase-9 and caspase-3, and decreasing phosphatidylserine exposure. Additionally, the distributions of Bax, Bcl-xL, and cytochrome c mediated by H2O2 in the mitochondria and the cytosol were also modulated by PCA treatment. Moreover, the inhibitory effects of PCA on platelet caspase-3 cleavage and phosphatidylserine exposure were mainly mediated by downregulating PI3K/Akt/GSK3ß signaling. Furthermore, PCA dose-dependently decreased reactive oxygen species (ROS) generation and the intracellular Ca2+ concentration in platelets in response to H2O2. N-Acetyl cysteine (NAC), a ROS scavenger, markedly abolished H2O2-stimulated PI3K/Akt/GSK3ß signaling, caspase-3 activation, and phosphatidylserine exposure. The combination of NAC and PCA did not show significant additive inhibitory effects on PI3K/Akt/GSK3ß signaling and platelet apoptosis. Thus, our results suggest that PCA protects platelets from oxidative stress-induced apoptosis through downregulating ROS-mediated PI3K/Akt/GSK3ß signaling, which may be responsible for cardioprotective roles of PCA in CVDs.


Assuntos
Apoptose/efeitos dos fármacos , Doenças Cardiovasculares/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hidroxibenzoatos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Plaquetas/metabolismo , Cálcio/metabolismo , Catalase/metabolismo , Humanos , Peróxido de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Ativação Plaquetária , Espécies Reativas de Oxigênio , Transdução de Sinais
14.
J Thromb Haemost ; 19(3): 839-851, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33222370

RESUMO

BACKGROUND: The effects of docosahexaenoic acid (DHA) on cardiovascular disease are controversial and a mechanistic understanding of how this omega-3 polyunsaturated fatty acid (ω-3 PUFA) regulates platelet reactivity and the subsequent risk of a thrombotic event is warranted. In platelets, DHA is oxidized by 12-lipoxygenase (12-LOX) producing the oxidized lipids (oxylipins) 11-HDHA and 14-HDHA. We hypothesized that 12-LOX DHA-oxylipins may be involved in the beneficial effects observed in dietary supplemental treatment with ω-3 PUFAs or DHA itself. OBJECTIVES: To determine the effects of DHA, 11-HDHA, and 14-HDHA on platelet function and thrombus formation, and to elucidate the mechanism by which these ω-3 PUFAs regulate platelet activation. METHODS AND RESULTS: DHA, 11-HDHA, and 14-HDHA attenuated collagen-induced human platelet aggregation, but only the oxylipins inhibited ⍺IIbß3 activation and decreased ⍺-granule secretion. Furthermore, treatment of whole blood with DHA and its oxylipins impaired platelet adhesion and accumulation to a collagen-coated surface. Interestingly, thrombus formation was only diminished in mice treated with 11-HDHA or 14-HDHA, and mouse platelet activation was inhibited following acute treatment with these oxylipins or chronic treatment with DHA, suggesting that under physiologic conditions, the effects of DHA are mediated through its oxylipins. Finally, the protective mechanism of DHA oxylipins was shown to be mediated via activation of protein kinase A. CONCLUSIONS: This study provides the first mechanistic evidence of how DHA and its 12-LOX oxylipins inhibit platelet activity and thrombus formation. These findings support the beneficial effects of DHA as therapeutic intervention in atherothrombotic diseases.


Assuntos
Ácidos Docosa-Hexaenoicos , Trombose , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Camundongos , Oxilipinas , Ativação Plaquetária , Transdução de Sinais , Trombose/tratamento farmacológico
15.
Sci Adv ; 6(49)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33277254

RESUMO

Antiplatelet agents offer a desirable approach to thrombosis prevention through the reduction of platelet reactivity. However, major bleeding events greatly attenuate the clinical outcomes of most antithrombotic agents. Therefore, the development of safer and more effective strategies to prevent vascular occlusion and avoid bleeding is urgently needed. A reconstituted nanoparticle, synthetic high-density lipoprotein (sHDL), which mimics the native HDL, has been established as clinically safe and is easily manufactured on a large scale. In this study, we propose that the delivery of the antiplatelet drug ML355, a selective inhibitor of 12(S)-lipoxygenase (12-LOX), by sHDL will efficiently inhibit thrombosis by targeting ML355 to the intended site of action, improving the pharmaceutical profile and harnessing the innate antithrombotic efficacy of the sHDL carrier. Our data show that ML355-sHDL exhibits more potent inhibition of thrombus formation in both small arterioles and larger arteries in mice without impairing the normal hemostasis in vivo.


Assuntos
Inibidores da Agregação Plaquetária , Trombose , Animais , Plaquetas , Hemorragia/tratamento farmacológico , Lipoproteínas HDL , Camundongos , Inibidores da Agregação Plaquetária/farmacologia , Trombose/tratamento farmacológico
16.
Proc Natl Acad Sci U S A ; 117(45): 28275-28286, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097663

RESUMO

Circulating platelets roll along exposed collagen at vessel injury sites and respond with filipodia protrusion, shape change, and surface area expansion to facilitate platelet adhesion and plug formation. Various glycoproteins were considered to be both collagen responders and mediators of platelet adhesion, yet the signaling kinetics emanating from these receptors do not fully account for the rapid platelet cytoskeletal changes that occur in blood flow. We found the free N-terminal fragment of the adhesion G protein-coupled receptor (GPCR) GPR56 in human plasma and report that GPR56 is the platelet receptor that transduces signals from collagen and blood flow-induced shear force to activate G protein 13 signaling for platelet shape change. Gpr56-/- mice have prolonged bleeding, defective platelet plug formation, and delayed thrombotic occlusion. Human and mouse blood perfusion studies demonstrated GPR56 and shear-force dependence of platelet adhesion to immobilized collagen. Our work places GPR56 as an initial collagen responder and shear-force transducer that is essential for platelet shape change during hemostasis.


Assuntos
Plaquetas/metabolismo , Colágeno/metabolismo , Hemostasia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Humanos , Integrinas/metabolismo , Camundongos , Camundongos Knockout , Adesividade Plaquetária , Agregação Plaquetária , Pseudópodes/metabolismo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Trombose/metabolismo , Transcriptoma
17.
Blood Adv ; 4(18): 4522-4537, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32946570

RESUMO

Arterial thrombosis is the underlying cause for a number of cardiovascular-related events. Although dietary supplementation that includes polyunsaturated fatty acids (PUFAs) has been proposed to elicit cardiovascular protection, a mechanism for antithrombotic protection has not been well established. The current study sought to investigate whether an omega-6 essential fatty acid, docosapentaenoic acid (DPAn-6), and its oxidized lipid metabolites (oxylipins) provide direct cardiovascular protection through inhibition of platelet reactivity. Human and mouse blood and isolated platelets were treated with DPAn-6 and its 12-lipoxygenase (12-LOX)-derived oxylipins, 11-hydroxy-docosapentaenoic acid and 14-hydroxy-docosapentaenoic acid, to assess their ability to inhibit platelet activation. Pharmacological and genetic approaches were used to elucidate a role for DPA and its oxylipins in preventing platelet activation. DPAn-6 was found to be significantly increased in platelets following fatty acid supplementation, and it potently inhibited platelet activation through its 12-LOX-derived oxylipins. The inhibitory effects were selectively reversed through inhibition of the nuclear receptor peroxisome proliferator activator receptor-α (PPARα). PPARα binding was confirmed using a PPARα transcription reporter assay, as well as PPARα-/- mice. These approaches confirmed that selectivity of platelet inhibition was due to effects of DPA oxylipins acting through PPARα. Mice administered DPAn-6 or its oxylipins exhibited reduced thrombus formation following vessel injury, which was prevented in PPARα-/- mice. Hence, the current study demonstrates that DPAn-6 and its oxylipins potently and effectively inhibit platelet activation and thrombosis following a vascular injury. Platelet function is regulated, in part, through an oxylipin-induced PPARα-dependent manner, suggesting that targeting PPARα may represent an alternative strategy to treat thrombotic-related diseases.


Assuntos
Araquidonato 12-Lipoxigenase , Plaquetas , Animais , Araquidonato 12-Lipoxigenase/genética , Araquidonato 12-Lipoxigenase/farmacologia , Lipídeos , Camundongos , PPAR alfa/genética , PPAR alfa/farmacologia , Proliferadores de Peroxissomos/farmacologia
18.
J Vasc Surg Venous Lymphat Disord ; 8(2): 268-278, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32067728

RESUMO

OBJECTIVE: There is an inter-relationship between thrombosis and inflammation. Previously, we have shown the importance of P-selectin in thrombogenesis and thrombus resolution in many preclinical animal models. The role of E-selectin has been explored in rodent models and in a small pilot study of clinical calf vein deep venous thrombosis. The purpose of this study was to determine the role of E-selectin in thrombosis in a primate model of proximal iliac vein thrombosis, a model close to the human condition. METHODS: Iliac vein thrombosis was induced with a well-characterized primate model. Through a transplant incision, the hypogastric vein and iliac vein branches were ligated. Thrombus was induced by balloon occlusion of the proximal and distal iliac vein for 6 hours. The balloons were then deflated, and the primates recovered. Starting on postocclusion day 2, animals were treated with the E-selectin inhibitor GMI-1271, 25 mg/kg subcutaneously, once daily until day 21 (n = 4). Nontreated control animals received no treatment (n = 5). All animals were evaluated by magnetic resonance venography (MRV); evaluation of vessel area by ultrasound, protein analysis, hematology (complete blood count), and coagulation tests (bleeding time, prothrombin time, activated partial thromboplastin time, fibrinogen, and thromboelastography) were performed at baseline, day 2, day 7, day 14, and day 21 with euthanasia. In addition, platelet function and CD44 expression on leukocytes were determined. RESULTS: E-selectin inhibition by GMI-1271 significantly increased vein recanalization by MRV vs control animals on day 14 (P < .05) and day 21 (P < .0001). GMI-1271 significantly decreased vein wall inflammation by MRV with gadolinium vein wall enhancement vs control also on day 14 (P < .0001) and day 21 (P < .0001). The thromboelastographic measure of clot strength (maximum amplitude) showed significant decreases in animals treated with GMI-1271 vs controls at day 2 (P < .05) and day 7 (P < .05). Animals treated with GMI-1271 had significant vessel area increase by day 21 vs controls (P < .05) by ultrasound. Vein wall intimal thickening (P < .001) and intimal fibrosis (P < .05) scores were significantly decreased in GMI-1271-treated animals vs controls. Importantly, no significant differences in hematology or coagulation test results were noted between all groups, suggesting that E-selectin inhibition carries no bleeding potential. GMI-1271 did not affect platelet function or aggregation or CD44 expression on leukocytes. In addition, no episodes of bleeding were noted in either group. CONCLUSIONS: This study suggests that E-selectin modulates venous thrombus progression and that its inhibition will increase thrombus recanalization and decrease vein wall inflammation, without affecting coagulation. The use of an E-selectin inhibitor such as GMI-1271 could potentially change how we treat deep venous thrombosis.


Assuntos
Anti-Inflamatórios/farmacologia , Selectina E/antagonistas & inibidores , Fibrinolíticos/farmacologia , Glicolipídeos/farmacologia , Veia Ilíaca/efeitos dos fármacos , Trombose Venosa/tratamento farmacológico , Animais , Modelos Animais de Doenças , Selectina E/metabolismo , Veia Ilíaca/diagnóstico por imagem , Veia Ilíaca/metabolismo , Papio , Transdução de Sinais , Trombose Venosa/diagnóstico por imagem , Trombose Venosa/metabolismo
19.
Thromb Haemost ; 120(2): 289-299, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31887775

RESUMO

Venous thrombosis (VT) resolution is a complex process, resembling sterile wound healing. Infiltrating blood-derived monocyte/macrophages (Mo/MΦs) are essential for the regulation of inflammation in tissue repair. These cells differentiate into inflammatory (CD11b+Ly6CHi) or proreparative (CD11b+Ly6CLo) subtypes. Previous studies have shown that infiltrating Mo/MΦs are important for VT resolution, but the precise roles of different Mo/MΦs subsets are not well understood. Utilizing murine models of stasis and stenosis inferior vena cava thrombosis in concert with a Mo/MΦ depletion model (CD11b-diphtheria toxin receptor [DTR]-expressing mice), we examined the effect of Mo/MΦ depletion on thrombogenesis and VT resolution. In the setting of an 80 to 90% reduction in circulating CD11b+Mo/MΦs, we demonstrated that Mo/MΦs are not essential for thrombogenesis, with no difference in thrombus size, neutrophil recruitment, or neutrophil extracellular traps found. Conversely, CD11b+Mo/MΦ are essential for VT resolution. Diphtheria toxoid (DTx)-mediated depletion after thrombus creation depleted primarily CD11b+Ly6CLo Mo/MΦs and resulted in larger thrombi. DTx-mediated depletion did not alter CD11b+Ly6CHi Mo/MΦ recruitment, suggesting a protective effect of CD11b+Ly6CLo Mo/MΦs in VT resolution. Confirmatory Mo/MΦ depletion with clodronate lysosomes showed a similar phenotype, with failure to resolve VT. Adoptive transfer of CD11b+Ly6CLo Mo/MΦs into Mo/MΦ-depleted mice reversed the phenotype, restoring normal thrombus resolution. These findings suggest that CD11b+Ly6CLo Mo/MΦs are essential for normal VT resolution, consistent with the known proreparative function of this subset, and that further study of Mo/MΦ subsets may identify targets for immunomodulation to accelerate and improve thrombosis resolution.


Assuntos
Lisossomos/metabolismo , Macrófagos/citologia , Monócitos/citologia , Trombose/sangue , Trombose Venosa/sangue , Transferência Adotiva , Animais , Antígenos Ly/metabolismo , Antígenos CD11/metabolismo , Separação Celular , Toxina Diftérica/farmacologia , Ensaio de Imunoadsorção Enzimática , Inflamação , Leucócitos , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/citologia , Fenótipo
20.
Food Funct ; 11(1): 139-152, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31755492

RESUMO

Coenzyme Q10 (CoQ10) exists in a wide variety of foods and has promising cardiovascular benefits. However, its effects on platelets and integrin αIIbß3 signaling during atherosclerosis have not been previously explored. Here, apolipoprotein E-deficient (ApoE-/-) mice were fed a standard diet, high-fat diet (HFD) or CoQ10-supplemented HFD for 12 weeks. We found that CoQ10 supplementation in ApoE-/- mice significantly alleviated formation of HFD-induced atherosclerotic lesions, and attenuated platelet hyper-aggregation and granule secretion, including CD62P, CD63 and CD40 ligand (CD40L) expression and platelet factor-4, ß-thromboglobulin and activation normal T cell expressed and secreted (CCL5) release. CoQ10 supplementation decreased soluble fibrinogen and JON/A binding to αIIbß3 on activated platelets, indicating that αIIbß3-mediated inside-out signaling was attenuated. Additionally, CoQ10 down-regulated platelet αIIbß3 outside-in signaling including decreasing phosphorylation of the ß3 intracellular tail, cellular and sarcoma tyrosine-protein kinase (c-Src), and myosin light chain (MLC), and consistently attenuating platelet spreading and clot retraction. Importantly, platelet-monocyte aggregation that was primarily mediated by αIIbß3 and can be blocked using an αIIbß3-specific antagonist tirofiban was also markedly diminished by CoQ10. Thus, CoQ10 supplementation attenuates platelet hyper-reactivity via down-regulating both αIIbß3 inside-out and outside-in signaling, which may play important preventive roles in atherothrombosis.


Assuntos
Aterosclerose/tratamento farmacológico , Agregação Plaquetária/efeitos dos fármacos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ubiquinona/análogos & derivados , Animais , Retração do Coágulo , Masculino , Camundongos , Camundongos Knockout para ApoE , Ubiquinona/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...