Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 243(1): 314-329, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38730532

RESUMO

Effector proteins are central to the success of plant pathogens, while immunity in host plants is driven by receptor-mediated recognition of these effectors. Understanding the molecular details of effector-receptor interactions is key for the engineering of novel immune receptors. Here, we experimentally determined the crystal structure of the Puccinia graminis f. sp. tritici (Pgt) effector AvrSr27, which was not accurately predicted using AlphaFold2. We characterised the role of the conserved cysteine residues in AvrSr27 using in vitro biochemical assays and examined Sr27-mediated recognition using transient expression in Nicotiana spp. and wheat protoplasts. The AvrSr27 structure contains a novel ß-strand rich modular fold consisting of two structurally similar domains that bind to Zn2+ ions. The N-terminal domain of AvrSr27 is sufficient for interaction with Sr27 and triggering cell death. We identified two Pgt proteins structurally related to AvrSr27 but with low sequence identity that can also associate with Sr27, albeit more weakly. Though only the full-length proteins, trigger Sr27-dependent cell death in transient expression systems. Collectively, our findings have important implications for utilising protein prediction platforms for effector proteins, and those embarking on bespoke engineering of immunity receptors as solutions to plant disease.


Assuntos
Proteínas Fúngicas , Nicotiana , Triticum , Zinco , Zinco/metabolismo , Triticum/imunologia , Triticum/microbiologia , Nicotiana/imunologia , Nicotiana/microbiologia , Nicotiana/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Puccinia , Imunidade Vegetal , Ligação Proteica , Sequência de Aminoácidos , Morte Celular , Domínios Proteicos , Modelos Moleculares , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia
2.
Protein Sci ; 31(5): e4311, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35481653

RESUMO

Excitation-contraction coupling (ECC) is the physiological process in which an electrical signal originating from the central nervous system is converted into muscle contraction. In skeletal muscle tissue, the key step in the molecular mechanism of ECC initiated by the muscle action potential is the cooperation between two Ca2+ channels, dihydropyridine receptor (DHPR; voltage-dependent L-type calcium channel) and ryanodine receptor 1 (RyR1). These two channels were originally postulated to communicate with each other via direct mechanical interactions; however, the molecular details of this cooperation have remained ambiguous. Recently, it has been proposed that one or more supporting proteins are in fact required for communication of DHPR with RyR1 during the ECC process. One such protein that is increasingly believed to play a role in this interaction is the SH3 and cysteine-rich domain-containing protein 3 (STAC3), which has been proposed to bind a cytosolic portion of the DHPR α1S subunit known as the II-III loop. In this work, we present direct evidence for an interaction between a small peptide sequence of the II-III loop and several residues within the SH3 domains of STAC3 as well as the neuronal isoform STAC2. Differences in this interaction between STAC3 and STAC2 suggest that STAC3 possesses distinct biophysical features that are potentially important for its physiological interactions with the II-III loop. Therefore, this work demonstrates an isoform-specific interaction between STAC3 and the II-III loop of DHPR and provides novel insights into a putative molecular mechanism behind this association in the skeletal muscle ECC process.


Assuntos
Canais de Cálcio Tipo L , Canal de Liberação de Cálcio do Receptor de Rianodina , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Acoplamento Excitação-Contração/fisiologia , Músculo Esquelético/fisiologia , Isoformas de Proteínas/metabolismo
3.
Biomol NMR Assign ; 12(2): 253-257, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29594929

RESUMO

Ahnak is a ~ 700 kDa polypeptide that was originally identified as a tumour-related nuclear phosphoprotein, but later recognized to play a variety of diverse physiological roles related to cell architecture and migration. A critical function of Ahnak is modulation of Ca2+ signaling in cardiomyocytes by interacting with the ß subunit of the L-type Ca2+ channel (CaV1.2). Previous studies have identified the C-terminal region of Ahnak, designated as P3 and P4 domains, as a key mediator of its functional activity. We report here the nearly complete 1H, 13C and 15N backbone NMR chemical shift assignments of the 11 kDa C-terminal P4 domain of Ahnak. This study lays the foundations for future investigations of functional dynamics, structure determination and interaction site mapping of the CaV1.2-Ahnak complex.


Assuntos
Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular , Sítios de Ligação , Canais de Cálcio Tipo L/metabolismo , Proteínas de Membrana/metabolismo , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
4.
Am J Physiol Cell Physiol ; 314(3): C323-C333, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29212769

RESUMO

Malignant hyperthermia (MH) susceptibility has been recently linked to a novel variant of ß1a subunit of the dihydropyridine receptor (DHPR), a channel essential for Ca2+ regulation in skeletal muscle. Here we evaluate the effect of the mutant variant V156A on the structure/function of DHPR ß1a subunit and assess its role on Ca2+ metabolism of cultured myotubes. Using differential scanning fluorimetry, we show that mutation V156A causes a significant reduction in thermal stability of the Src homology 3/guanylate kinase core domain of ß1a subunit. Expression of the variant subunit in ß1-null mouse myotubes resulted in increased sensitivity to caffeine stimulation. Whole cell patch-clamp analysis of ß1a-V156A-expressing myotubes revealed a -2 mV shift in voltage dependence of channel activation, but no changes in Ca2+ conductance, current kinetics, or sarcoplasmic reticulum Ca2+ load were observed. Measurement of resting free Ca2+ and Na+ concentrations shows that both cations were significantly elevated in ß1a-V156A-expressing myotubes and that these changes were linked to increased rates of plasmalemmal Ca2+ entry through Na+/Ca2+ exchanger and/or transient receptor potential canonical channels. Overall, our data show that mutant variant V156A results in instability of protein subdomains of ß1a subunit leading to a phenotype of Ca2+ dysregulation that partly resembles that of other MH-linked mutations of DHPR α1S subunit. These data prove that homozygous expression of variant ß1a-V156A has the potential to be a pathological variant, although it may require other gene defects to cause a full MH phenotype.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Hipertermia Maligna/metabolismo , Mioblastos/metabolismo , Animais , Cafeína/farmacologia , Cálcio/metabolismo , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/genética , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Homozigoto , Humanos , Cinética , Hipertermia Maligna/genética , Hipertermia Maligna/fisiopatologia , Camundongos Knockout , Mutação , Mioblastos/efeitos dos fármacos , Domínios Proteicos , Estabilidade Proteica , Relação Estrutura-Atividade
5.
J Biol Chem ; 292(20): 8401-8411, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28351836

RESUMO

Excitation-contraction (EC) coupling in skeletal muscle requires a physical interaction between the voltage-gated calcium channel dihydropyridine receptor (DHPR) and the ryanodine receptor Ca2+ release channel. Although the exact molecular mechanism that initiates skeletal EC coupling is unresolved, it is clear that both the α1 and ß subunits of DHPR are essential for this process. Here, we employed a series of techniques, including size-exclusion chromatography-multi-angle light scattering, differential scanning fluorimetry, and isothermal calorimetry, to characterize various biophysical properties of the skeletal DHPR ß subunit ß1a Removal of the intrinsically disordered N and C termini and the hook region of ß1a prevented oligomerization, allowing for its structural determination by X-ray crystallography. The structure had a topology similar to that of previously determined ß isoforms, which consist of SH3 and guanylate kinase domains. However, transition melting temperatures derived from the differential scanning fluorimetry experiments indicated a significant difference in stability of ∼2-3 °C between the ß1a and ß2a constructs, and the addition of the DHPR α1s I-II loop (α-interaction domain) peptide stabilized both ß isoforms by ∼6-8 °C. Similar to other ß isoforms, ß1a bound with nanomolar affinity to the α-interaction domain, but binding affinities were influenced by amino acid substitutions in the adjacent SH3 domain. These results suggest that intramolecular interactions between the SH3 and guanylate kinase domains play a role in the stability of ß1a while also providing a conduit for allosteric signaling events.


Assuntos
Canais de Cálcio Tipo L/química , Guanilato Quinases/química , Regulação Alostérica , Animais , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Cristalografia por Raios X , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Camundongos , Estrutura Secundária de Proteína , Transdução de Sinais , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...