Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Texture Stud ; 54(6): 936-946, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37673688

RESUMO

Infant feeding behaviors are modulated via sensorimotor feedback, such that sensory perturbations can significantly impact performance. Properties of the nipple and milk (e.g., nipple hole size and viscosity) are critical sources of sensory information. However, the direct effects of varying milk and nipple properties on infant motor output and the subsequent changes in feeding performance are poorly understood. In this study, we use an infant pig model to explore the interaction between nipple hole size and milk viscosity. Using high-speed videofluoroscopy and electromyography, we measured key performance metrics including sucks per swallow and suck duration, then synchronized these data with the onset and offset of activity of jaw opening and closing muscles. The combination of a small nipple hole and thick milk resulted in negative effects on both suck and swallow performance, with reduced feeding efficiency compared to the other treatments. It also appears that this combination of viscosity and hole size disrupts the coordination between correlates of tongue and jaw movements. We did not see a difference in feeding efficiency between viscosities when infants fed on the large-hole nipple, which may be the result of non-Newtonian fluid mechanics. Our results emphasize the importance of considering both fluid and nipple properties when considering alterations to an infant's feeding system.


Assuntos
Alimentação com Mamadeira , Mamilos , Lactente , Humanos , Animais , Suínos , Alimentação com Mamadeira/métodos , Viscosidade , Comportamento de Sucção/fisiologia , Comportamento Alimentar
2.
J Exp Zool A Ecol Integr Physiol ; 339(10): 1052-1058, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37653670

RESUMO

The coordination of respiration and swallowing is a life-critical function in infants. Varying volume and rate of milk delivery changes swallowing frequency and bolus volume but any impact on swallow-respiration coordination is unknown. Five infant pigs were filmed with simultaneous high speed videofluoroscopy and plethysmography while feeding from an automatic system delivering milk across a range of volumes and frequencies. Swallow inspiration delay, respiratory cycle duration, and distribution of inspiratory and expiratory swallows were calculated. At constant volume, there were more inspiratory phase swallows when frequency increased. At high constant frequency, increasing volume changed swallow-respiration coordination patterns, with increased occurrence of inspiratory phase swallows. Respiratory cycle duration did not change in response to changes in oral milk delivery. These results suggest that the observed pattern of expiratory swallowing in infants is achieved primarily by regulation of milk intake, not modulation of respiratory patterns by oral sensation.


Assuntos
Deglutição , Leite , Suínos , Animais , Deglutição/fisiologia , Respiração
3.
J Exp Zool A Ecol Integr Physiol ; 339(8): 767-776, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37438924

RESUMO

Infant feeding is a critical neurological milestone in development defined by the coordination of muscles, peripheral nerves, and brainstem nuclei. In infants, milk flow rate is often limited to improve feeding performance without treating the underlying deficiencies in the sucking and swallowing processes. Modification of the neuromotor response via sensory information from the nipple during bottle feeding is an unexplored avenue for physiology-based interventions. In this study, we assessed how differences in nipple hole size and nipple stiffness affect sucking muscle activation and subsequent movement. We fabricated four bottle nipples of varying hole size and stiffness to determine how variation in nipple properties affects the sucking behavior of infant pigs. Our results demonstrate that sensory information from the nipple affects sucking motor output. Nipple hole sizes and stiffnesses with a larger milk flow rate resulted in greater muscle activity and kinematic movement. Additionally, our results suggest that sensorimotor interventions are better directed toward modulating tongue function rather than the mandible movements due to a greater response to sensory information. Understanding how sensory information influences infant feeding is instrumental in promoting effective infant feeding.


Assuntos
Alimentação com Mamadeira , Mamilos , Suínos , Animais , Ingestão de Alimentos , Respiração , Comportamento de Sucção/fisiologia
4.
J Exp Zool A Ecol Integr Physiol ; 339(1): 92-100, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36121049

RESUMO

During infant feeding, the nipple is an important source of sensory information that affects motor outputs, including ones dealing with compression of the nipple, suction, milk bolus movement, and swallowing. Despite known differences in behavior across commercially available nipples, little is known about the in vivo effects of nipple property variation. Here we quantify the effect of differences in nipple stiffness and hole size on an easily measured metric representing infant feeding behavior: nipple compression. We bottle-fed 7-day old infant pigs (n = 6) on four custom fabricated silicone nipples. We recorded live X-ray fluoroscopic imaging data of feeding on nipples of two levels of hardness/stiffness and two hole sizes. We tested for differences in nipple compression at the nipple's maximum compression across different nipple types using a mixed model analysis of variance. Stiffer nipples and those with smaller holes were compressed less than compliant nipples and nipples with larger holes (p < 0.001). We also estimated the force applied on the nipple during feeding and found that more force was applied to the compliant nipple with disproportionately larger strains. Our results suggest that infant pigs' nipple compression depends on material type and hole size, which is likely detected by the infant pigs' initial assessment of compressibility and flow. By isolating nipple properties, we demonstrated a relationship between properties and suckling behavior. Our results suggest that sensory information affects feeding behaviors and may also inform clinical treatment of poor feeding performance.


Assuntos
Alimentação com Mamadeira , Comportamento de Sucção , Suínos , Animais , Comportamento de Sucção/fisiologia , Mamilos
5.
PLoS One ; 16(2): e0246954, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33592070

RESUMO

Infant birth weight affects neuromotor and biomechanical swallowing performance in infant pig models. Preterm infants are generally born low birth weight and suffer from delayed development and neuromotor deficits. These deficits include critical life skills such as swallowing and breathing. It is unclear whether these neuromotor and biomechanical deficits are a result of low birth weight or preterm birth. In this study we ask: are preterm infants simply low birth weight infants or do preterm infants differ from term infants in weight gain and swallowing behaviors independent of birth weight? We use a validated infant pig model to show that preterm and term infants gain weight differently and that birth weight is not a strong predictor of functional deficits in preterm infant swallowing. We found that preterm infants gained weight at a faster rate than term infants and with nearly three times the variation. Additionally, we found that the number of sucks per swallow, swallow duration, and the delay of the swallows relative to the suck cycles were not impacted by birth weight. These results suggest that any correlation of developmental or swallowing deficits with reduced birth weight are likely linked to underlying physiological immaturity of the preterm infant.


Assuntos
Peso ao Nascer , Nascimento Prematuro/fisiopatologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Gravidez , Suínos
6.
Proc Natl Acad Sci U S A ; 117(4): 2180-2186, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31932424

RESUMO

Gravity is one of the most ubiquitous environmental effects on living systems: Cellular and organismal responses to gravity are of central importance to understanding the physiological function of organisms, especially eukaryotes. Gravity has been demonstrated to have strong effects on the closed cardiovascular systems of terrestrial vertebrates, with rapidly responding neural reflexes ensuring proper blood flow despite changes in posture. Invertebrates possess open circulatory systems, which could provide fewer mechanisms to restrict gravity effects on blood flow, suggesting that these species also experience effects of gravity on blood pressure and distribution. However, whether gravity affects the open circulatory systems of invertebrates is unknown, partly due to technical measurement issues associated with small body size. Here we used X-ray imaging, radio-tracing of hemolymph, and micropressure measurements in the American grasshopper, Schistocerca americana, to assess responses to body orientation. Our results show that during changes in body orientation, gravity causes large changes in blood and air distribution, and that body position affects ventilation rate. Remarkably, we also found that insects show similar heart rate responses to body position as vertebrates, and contrasting with the classic understanding of open circulatory systems, have flexible valving systems between thorax and abdomen that can separate pressures. Gravitational effects on invertebrate cardiovascular and respiratory systems are likely to be widely distributed among invertebrates and to have broad influence on morphological and physiological evolution.


Assuntos
Gafanhotos/fisiologia , Gravitação , Adaptação Fisiológica , Animais , Pressão Sanguínea , Tamanho Corporal , Fenômenos Fisiológicos Cardiovasculares , Gafanhotos/crescimento & desenvolvimento , Fenômenos Fisiológicos Respiratórios
7.
Sci Rep ; 9(1): 6075, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988336

RESUMO

The insect circulatory system contains an open hemocoel, in which the mechanism of hemolymph flow control is ambiguous. As a continuous fluidic structure, this cavity should exhibit pressure changes that propagate quickly. Narrow-waisted insects create sustained pressure differences across segments, but their constricted waist provides an evident mechanism for compartmentalization. Insects with no obvious constrictions between segments may be capable of functionally compartmentalizing the body, which could explain complex hemolymph flows. Here, we test the hypothesis of functional compartmentalization by measuring pressures in a beetle and recording abdominal movements. We found that the pressure is indeed uniform within the abdomen and thorax, congruent with the predicted behavior of an open system. However, during some abdominal movements, pressures were on average 62% higher in the abdomen than in the thorax, suggesting that functional compartmentalization creates a gradient within the hemocoel. Synchrotron tomography and dissection show that the arthrodial membrane and thoracic muscles may contribute to this dynamic pressurization. Analysis of volume change suggests that the gut may play an important role in regulating pressure by translating between body segments. Overall, this study suggests that functional compartmentalization may provide an explanation for how fluid flows are managed in an open circulatory system.


Assuntos
Besouros/fisiologia , Hemolinfa/fisiologia , Abdome/anatomia & histologia , Abdome/diagnóstico por imagem , Abdome/fisiologia , Animais , Besouros/anatomia & histologia , Dissecação , Hidrodinâmica , Músculos/diagnóstico por imagem , Músculos/fisiologia , Pressão , Síncrotrons , Tórax/anatomia & histologia , Tórax/diagnóstico por imagem , Tórax/fisiologia , Tomografia/instrumentação
8.
Ann Biomed Eng ; 44(5): 1636-45, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26464267

RESUMO

The health and financial cost of falls has spurred research to differentiate the characteristics of fallers and non-fallers. Postural stability has received much of the attention with recent studies exploring various measures of entropy. This study compared the discriminatory ability of several entropy methods at differentiating two paradigms in the center-of-pressure of elderly individuals: (1) eyes open (EO) vs. eyes closed (EC) and (2) fallers (F) vs. non-fallers (NF). Methods were compared using the area under the curve (AUC) of the receiver-operating characteristic curves developed from logistic regression models. Overall, multiscale entropy (MSE) and composite multiscale entropy (CompMSE) performed the best with AUCs of 0.71 for EO/EC and 0.77 for F/NF. When methods were combined together to maximize the AUC, the entropy classifier had an AUC of for 0.91 the F/NF comparison. These results suggest researchers and clinicians attempting to create clinical tests to identify fallers should consider a combination of every entropy method when creating a classifying test. Additionally, MSE and CompMSE classifiers using polar coordinate data outperformed rectangular coordinate data, encouraging more research into the most appropriate time series for postural stability entropy analysis.


Assuntos
Acidentes por Quedas , Modelos Biológicos , Equilíbrio Postural , Idoso , Idoso de 80 Anos ou mais , Entropia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...