Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dent Mater ; 38(7): 1128-1139, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35618552

RESUMO

OBJECTIVE: This interlaboratory round robin test investigated the robustness of the Chevron-Notch Beam (CNB) test method and the effect of the processing and testing variations on the fracture toughness of a dental 3Y-TZP ceramic. METHODS: The round robin test was performed precisely following the procedures recommended in ISO 24370:2005 and applied on a commercial 3Y-TZP ceramic (product information). A total of 335 test specimens with dimensions 3×4 x 45 mm³ was equally distributed among 10 participating laboratories of varying experience in fracture toughness testing. A standard operating procedure was defined with either narrow processing tolerances or alternative (wider) processing tolerances (as proposed in ISO 24370). Fracture toughness data (series 2) was analyzed using one way ANOVA followed by post hoc Tukey HSD test and 95% Confidence Intervals (CI) were computed (p < 0.05). A further, preceding round-robin (series 1) test was conducted with - more possible variations of test conditions regarding CNB notch processing and storage conditions. Those results are summarized in the supplement and discussed with the actual ISO 24370 test. RESULTS: Fracture toughness of the 3Y-TZP ceramic material, summarized over all laboratories was measured to KIc = 4.48 ± 0.11 MPam0.5 for the standard processing tolerance and KIc = 4.55 ± 0.31 MPam0.5 for the alternative tolerance. The results revealed a significant influence of cutting offset and notch geometry on KIc when using CNB method. The test medium also has a significant influence on KIc in terms of reduced fracture toughness under the influence of water. With defined testing conditions the number of valid tests and reduced standard deviation increased. In case of strictly following such standard operation procedures, KIc can be determined with high reliability. There is no difference between the involved laboratories, but significant influence of cutting offset on KIC was observed. SIGNIFICANCE: The CNB method is suitable method for determination of KIc on fine-grained ceramics such as 3Y-TZP ceramic. By using tighter tolerances for processing and testing, i.e. closely following the ISO 24370 procedure, a highly-precise evaluation of fracture toughness with low data variation is achievable. The information of the storage medium should always be reported along with the data. CNB fracture toughness testing is an alternative method compared to Single-edge V-notch beam (SEVNB), especially for fine-grained ceramics.


Assuntos
Cerâmica , Zircônio , Materiais Dentários , Teste de Materiais/métodos , Reprodutibilidade dos Testes , Propriedades de Superfície
2.
J Mech Behav Biomed Mater ; 115: 104285, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33360485

RESUMO

Incorporation of biodegradable poly(lactic-co-glycolic acid; PLGA) fibers into calcium phosphate cements (CPCs) has proven beneficial for their mechanical properties and the targeted delivery of bone morphogenetic proteins (BMPs). However, the deficiency of functional groups on the PLGA surface results in poor fiber-matrix interfacial strength (ISS), limiting the mechanical improvement, and insufficient surface charge to immobilize therapeutic amounts of BMPs. The present study therefore focused on the: i) functionalization of PLGA fibers using polyelectrolyte multilayers (PEMs) of biopolymers; ii) analysis of their impact on the mechanical properties of the CPC in multifilament fiber pull-out tests; and iii) testing of their applicability as carriers for BMPs using chemical-free adsorption of biotinylated recombinant human growth factor (rhGDF-5) and colorimetric assays. The PEMs were created from chitosan (Chi), hyaluronic acid (HA), and gelatin (Gel) via layer-by-layer (LbL) deposition. Four PEM nanocoatings consisting of alternating Chi/Gel and Chi/HA bilayers with a terminating layer of Chi, Gel or HA were tested. Nanocoating of the PLGA fibers with PEMs significantly enhanced the ISS with the CPC matrix to max. 3.55 ± 1.05 MPa (2.2-fold). The increase in ISS, ascribed to enhanced electrostatic interactions between PLGA and calcium phosphate, was reflected in significant improvement of the composites' flexural strength compared to CPC containing untreated fibers. However, only minor effects on the composites' work of fracture were observed. The adsorption of rhGDF-5 on the PLGA surface was supported by PEMs terminating with either positive or negative charges, without significant differences among the nanocoatings. This proof-of-principle rhGDF-5 immobilization study, together with the augmented ISS of the composites, demonstrates that surface modification of PLGA fibers with biopolymers is a promising approach for targeted delivery of BMPs and improved mechanical properties of the fiber-reinforced CPC.


Assuntos
Cimentos Ósseos , Fosfatos de Cálcio , Biopolímeros , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Resistência ao Cisalhamento
3.
Dent Mater ; 37(2): 284-295, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33358016

RESUMO

OBJECTIVE: The aim of this interlaboratory round robin test was to prove the robustness of the DIN EN ISO 6872:2019 and to identify the influence of processing and testing variations. METHODS: Each of the 12 laboratories participated (A-L) received 60 (n = 720) assigned zirconia specimens. All participants seperated the specimens from the blanks, sintered them, polished half of all specimens and performed the biaxial flexural test (DIN EN ISO 6872:2019). The surface roughness was determined by using tactile measuring device. Fractographic examination was performed under scanning-electron-microscopy (SEM). Data was analysed using Kolmogorov-Smirnov-, Kruskal-Wallis-, Mann-Whitney-U-test and two-parametric Weibull statistic (p < 0.05). RESULTS: The results for both preparation methods (as-fired and polished) showed significant differences for some participants. The values for as-fired groups ranged between 513 (I) and 659 (E) MPa. H showed higher Weibull modulus than C, E and I. Within polished groups flexural strengths values from 465 (L) to 1212 (E) MPa were observed, with a tendency to clustered groups A, I, J, L (465-689 MPa) and remaining groups (877-1212 MPa). E presented the highest and H the lowest Weibull modulus. Within A and J, no impact of the preparation method on flexural strength values was observed. Within L, as-fired specimens showed higher flexural strength than polished ones. The flexural strength increase did only associate to a certain extent with measured surface roughness. Fractography showed defect populations depending on polishing techniques, associated to the strength level, especially for polished groups. Reduced strength is related to machining defects, regardless of the surface state. SIGNIFICANCE: DIN EN ISO 6872:2019 can be seen as guidance to biaxial flexural strength testing but additional effort is necessary to ensure interlaboratory comparability. Calibrated furnaces and reliable sintering conditions are mandatory requirements together with detailed specifications on finishing or polishing procedures. Biaxial flexural testing is really a matter of understanding specimen preparation, alignment and mechanical testing by itself. DIN EN ISO 6872:2019 should further recommend reporting of mean surface roughness along with any biaxial flexural strength data. Fractography is a mandatory tool in interpretation and understanding of strength data.


Assuntos
Resistência à Flexão , Laboratórios , Cerâmica , Humanos , Teste de Materiais , Propriedades de Superfície , Zircônio
4.
Acta Biomater ; 9(3): 5810-20, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23142481

RESUMO

One key for the successful integration of implants into the human body is the control of protein adsorption by adjusting the surface properties at different length scales. This is particularly important for titanium oxide, one of the most common biomedical interfaces. As for titania (TiO(2)) the interface is largely defined by its crystal surface structure, it is crucial to understand how the surface crystallinity affects the structure, properties and function of protein layers mediating subsequent biological reactions. For rutile TiO(2) we demonstrate that the conformation and relative amount of human plasma fibrinogen (HPF) and the structure of adsorbed HPF layers depend on the crystal surface nanostructure by employing thermally etched multi-faceted TiO(2) surfaces. Thermal etching of polycrystalline TiO(2) facilitates a nanoscale crystal faceting and, thus, the creation of different surface nanostructures on a single specimen surface. Atomic force microscopy shows that HPF arranges into networks and thin globular layers on flat and irregular crystal grain surfaces, respectively. On a third, faceted category we observed an alternating conformation of HPF on neighboring facets. The bulk grain orientation obtained from electron backscatter diffraction and thermodynamic mechanisms of surface reconstruction during thermal etching suggest that the grain and facet surface-specific arrangement and relative amount of adsorbed proteins depend on the associated free crystal surface energy. The implications for potentially favorable TiO(2) crystal facets regarding the inflammatory response and hemostasis are discussed with a view to the advanced surface design of future implants.


Assuntos
Fibrinogênio/metabolismo , Nanoestruturas/química , Titânio/química , Anisotropia , Materiais Biocompatíveis/farmacologia , Cristalização , Humanos , Inflamação/patologia , Microscopia de Força Atômica , Nanoestruturas/ultraestrutura , Espectroscopia Fotoeletrônica , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...