Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hear Res ; 448: 109030, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38776705

RESUMO

Sex is a pivotal biological factor that significantly impacts tissue homeostasis and disease susceptibility. In the auditory system, sex differences have been observed in cochlear physiology and responses to pathological conditions. However, the underlying molecular mechanisms responsible for these differences remain elusive. The current research explores the differences in gene expression profiles in the cochlea between male and female mice, aiming to understand the functional implication of sex-biased gene expression in each sex. Using RNA-sequencing analysis on cochlear tissues obtained from male and female mice, we identified a significant number of genes exhibiting sex-biased expression differences. While some of these differentially expressed genes are located on sex chromosomes, most are found on autosomal chromosomes. Further bioinformatic analysis revealed that these genes are involved in several key cellular functions. In males, these genes are notably linked to oxidative phosphorylation and RNA synthesis and processing, suggesting their involvement in mitochondrial energy production and regulatory control of gene expression. In contrast, sex-biased genes are associated with mechano-transduction and synaptic transmission within female cochleae. Collectively, our study provides valuable insights into the molecular differences between the sexes and emphasizes the need for future research to uncover their functional implications and relevance to auditory health and disease development.

2.
Hear Res ; 424: 108602, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36103788

RESUMO

Sex differences in the development of sensorineural hearing loss have been recognized in various inner ear disorders, but the molecular basis for such differences is poorly understood. Autosomal genes have been shown to cause sex differences in disease susceptibility, but many genes exerting sex-dependent effects on auditory function remain to be identified. Galectin-3 (Gal-3), a protein encoded by the autosomal gene Lgals3, is a member of the ß-galactoside-binding protein family, and has been linked to multiple biological processes, including immune responses, apoptosis, and cell adhesion. Here, we investigated auditory function and hair cell integrity in Gal-3 knockout (KO, Lgals3-/-) and wild-type (WT, Lgals3+/+) mice from age 1 to 6 months. KO mice show a more rapid age-related increase in ABR thresholds compared to WT mice. Noticeably, the threshold deterioration in female KO mice is significantly greater than in the male KO and WT mice. The ABR threshold elevation manifests over a broad frequency range in female KO mice, whereas the threshold elevations are confined to high frequencies in the male KO and WT mice. Moreover, DPOAE input/output functions reveal a similar pattern of auditory dysfunction, with the female KO mice displaying a significantly greater reduction in DPOAE amplitudes than male KO mice and WT mice of both sexes. Finally, age-related outer hair cell loss is greater for female KO mice compared to male KO mice and WT mice of both sexes. Together, these results indicate that Gal-3 deficiency exacerbates age-related cochlear degeneration and auditory dysfunction in female mice. Our study identifies Gal-3 as a sex-dependent molecule for maintaining female cochlear integrity.


Assuntos
Galectina 3 , Audição , Animais , Limiar Auditivo/fisiologia , Cóclea , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Galectina 3/genética , Galectina 3/metabolismo , Células Ciliadas Auditivas Externas/fisiologia , Masculino , Camundongos , Camundongos Knockout
3.
Artigo em Inglês | MEDLINE | ID: mdl-34790885

RESUMO

Disability is an important and often overlooked component of diversity. Individuals with disabilities bring a rare perspective to science, technology, engineering, mathematics, and medicine (STEMM) because of their unique experiences approaching complex issues related to health and disability, navigating the healthcare system, creatively solving problems unfamiliar to many individuals without disabilities, managing time and resources that are limited by physical or mental constraints, and advocating for themselves and others in the disabled community. Yet, individuals with disabilities are underrepresented in STEMM. Professional organizations can address this underrepresentation by recruiting individuals with disabilities for leadership opportunities, easing financial burdens, providing equal access, fostering peer-mentor groups, and establishing a culture of equity and inclusion spanning all facets of diversity. We are a group of deaf and hard-of-hearing (D/HH) engineers, scientists, and clinicians, most of whom are active in clinical practice and/or auditory research. We have worked within our professional societies to improve access and inclusion for D/HH individuals and others with disabilities. We describe how different models of disability inform our understanding of disability as a form of diversity. We address heterogeneity within disabled communities, including intersectionality between disability and other forms of diversity. We highlight how the Association for Research in Otolaryngology has supported our efforts to reduce ableism and promote access and inclusion for D/HH individuals. We also discuss future directions and challenges. The tools and approaches discussed here can be applied by other professional organizations to include individuals with all forms of diversity in STEMM.

4.
Hear Res ; 395: 108022, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32663733

RESUMO

Acoustic information transduced by cochlear hair cells is continuously relayed from the auditory pathway to other sensory, motor, emotional and cognitive centers in the central nervous system. Human epidemiological studies have suggested that hearing loss is a risk factor for dementia and cognitive decline, but the mechanisms contributing to these memory and cognitive impairments are poorly understood. To explore these issues in a controlled experimental setting, we exposed adult rats to a series of intense blast wave exposures that significantly reduced the neural output of the cochlea. Several weeks later, we used the Morris Water Maze test, a hippocampal-dependent memory task, to assess the ability of Blast Wave and Control rats to learn a spatial navigation task (memory acquisition) and to remember what they had learned (spatial memory retention) several weeks earlier. The elevated plus maze and open field arena were used to test for anxiety-like behaviors. Afterwards, hippocampal cell proliferation and neurogenesis were evaluated using bromodeoxyuridine (BrdU), doublecortin (DCX), and Neuronal Nuclei (NeuN) immunolabeling. The Blast Wave and Control rats learned the spatial navigation task equally well and showed no differences on tests of anxiety. However, the Blast Wave rats performed significantly worse on the spatial memory retention task, i.e., remembering where they had been two weeks earlier. Deficits on the spatial memory retention task were associated with significant decreases in hippocampal cell proliferation and neurogenesis. Our blast wave results are consistent with other experimental manipulations that link spatial memory retention deficits (long term memory) with decreased cell proliferation and neurogenesis in the hippocampus. These results add to the growing body of knowledge linking blast-induced cochlear hearing loss with the cognitive deficits often seen in combat personnel and provide mechanistic insights into these extra auditory disorders that could lead to therapeutic interventions.


Assuntos
Perda Auditiva , Animais , Perda Auditiva/etiologia , Hipocampo , Aprendizagem em Labirinto , Memória de Longo Prazo , Neurogênese , Ratos , Memória Espacial
5.
Hear Res ; 393: 108012, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32554129

RESUMO

Moderate intensity sounds can reduce pain sensitivity (i.e., audio-analgesia) whereas intense sounds can induce aural pain, evidence of multisensory interaction between auditory and pain pathways. To explore auditory-pain pathway interactions, we used the tail-flick (TF) test to assess thermal tail-pain sensitivity by measuring the latency of a rat to remove its tail from 52 °C water. In Experiment 1, TF latencies were measured in ambient noise and broadband noise (BBN) presented from 80 to 120 dB SPL. TF latencies gradually increased from ambient to 90 dB SPL (audio-analgesia), but then declined. At 120 dB, TF latencies were significantly shorter than normal, evidence for audio-hyperalgesia near the aural threshold for pain. In Experiment II, the opioid pain pathway was modified by treating rats with a high dose of fentanyl known to induce post-treatment hyperalgesia. TF latencies in ambient noise were normal 10-days post-fentanyl. However, TF latencies became shorter than normal from 90 to 110 dB indicating that fentanyl pre-treatment had converted audio-analgesia to audio-hyperalgesia. In Experiment III, we tested the hypothesis that hearing loss could alter pain sensitivity by unilaterally exposing rats to an intense noise that induced a significant hearing loss. TF latencies in ambient noise gradually declined from 1- to 4-weeks post-exposure indicating that noise-induced hearing loss had increased pain sensitivity. Our results suggest that auditory and pain pathways interact in ways that depend on intensity, hearing loss and opioid pain signaling, results potentially relevant to pain hyperacusis.


Assuntos
Perda Auditiva , Dor , Analgésicos Opioides/toxicidade , Animais , Limiar Auditivo , Surdez , Fentanila , Perda Auditiva Provocada por Ruído , Hiperalgesia , Ratos
8.
Mol Cell Neurosci ; 75: 101-12, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27473923

RESUMO

Severe noise-induced damage to the inner ear leads to auditory nerve fiber degeneration thereby reducing the neural input to the cochlear nucleus (CN). Paradoxically, this leads to a significant increase in spontaneous activity in the CN which has been linked to tinnitus, hyperacusis and ear pain. The biological mechanisms that lead to an increased spontaneous activity are largely unknown, but could arise from changes in glutamatergic or GABAergic neurotransmission or neuroinflammation. To test this hypothesis, we unilaterally exposed rats for 2h to a 126dB SPL narrow band noise centered at 12kHz. Hearing loss measured by auditory brainstem responses exceeded 55dB from 6 to 32kHz. The mRNA from the exposed CN was harvested at 14 or 28days post-exposure and qRT-PCR analysis was performed on 168 genes involved in neural inflammation, neuropathic pain and glutamatergic or GABAergic neurotransmission. Expression levels of mRNA of Slc17a6 and Gabrg3, involved in excitation and inhibition respectively, were significantly increased at 28days post-exposure, suggesting a possible role in the CN spontaneous hyperactivity associated with tinnitus and hyperacusis. In the pain and inflammatory array, noise exposure upregulated mRNA expression levels of four pain/inflammatory genes, Tlr2, Oprd1, Kcnq3 and Ntrk1 and decreased mRNA expression levels of two more genes, Ccl12 and Il1ß. Pain/inflammatory gene expression changes via Ntrk1 signaling may induce sterile inflammation, neuropathic pain, microglial activation and migration of nerve fibers from the trigeminal, cuneate and vestibular nuclei into the CN. These changes could contribute to somatic tinnitus, hyperacusis and otalgia.


Assuntos
Núcleo Coclear/metabolismo , Perda Auditiva Provocada por Ruído/metabolismo , Neuralgia/metabolismo , Receptor trkA/genética , Transdução de Sinais , Animais , Núcleo Coclear/fisiopatologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo , Proteínas Quimioatraentes de Monócitos/genética , Proteínas Quimioatraentes de Monócitos/metabolismo , Neuralgia/fisiopatologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor trkA/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores Opioides delta/genética , Receptores Opioides delta/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
9.
J Comp Neurol ; 521(7): 1470-81, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22821633

RESUMO

WD40 repeat protein 1 (WDR1) has been suggested as a protective mechanism or a sign of regeneration in avian cochlea. However, its role in mammalian cochlea has yet to be determined. Hence, we investigated WDR1 expression in sound-overstimulated Sprague-Dawley rats. Rats were divided into three groups (the permanent and temporary threshold shift [PTS and TTS] groups and the control group) according to the extent of noise exposure and euthanized immediately, 3, or 7 days after noise exposure for cochlear harvest. Immunocytochemistry localized WDR1 to outer hair cells, Deiter's cells, outer sulcus cells, and Reissner's membrane in the control group, and the PTS and TTS groups exhibited stronger WDR1 expression in the same cochlear regions than the controls. Moreover, WDR1 expression in these noise-exposed groups was extended to inner hair cells and basal cells of the stria vascularis. The expression of WDR1 in the PTS and TTS groups showed differences in intensity and shifts of localization, based on exposure length and recovery duration. Contrary to the avian cochlea, hair cell regeneration does not naturally occur in the acoustically damaged mammalian cochlea. Therefore, elevated WDR1 expression after acoustic overstimulation in the current experiments may provide a mechanism for protection against noise exposure.


Assuntos
Cóclea/metabolismo , Proteínas dos Microfilamentos/biossíntese , Ruído/efeitos adversos , Animais , Western Blotting , Potenciais Evocados Auditivos do Tronco Encefálico , Imuno-Histoquímica , Masculino , Proteínas dos Microfilamentos/análise , Ratos , Ratos Sprague-Dawley
10.
Hear Res ; 252(1-2): 49-55, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19397967

RESUMO

Sex differences in song behavior and in the neural system controlling song in songbirds are well documented but relatively little is known about sex differences in hearing. We recently demonstrated the existence of sex differences in auditory brainstem responses in a songbird species, the zebra finch (Taeniopygia guttata). Many sex differences are regulated by sex steroid hormone action either during ontogeny or in adulthood. As a first step to test the possible implication of sex steroids in the control of sex differences in the zebra finch auditory system, we evaluated via immunocytochemistry whether estrogens are produced and act in the zebra finch inner ear. Specifically we examined the distribution of aromatase, the enzyme converting testosterone into an estrogen, and of estrogen receptors of the alpha subtype (ERalpha) in adult zebra finch inner ears. The anatomy of the basilar papillae was visualized by fluorescein-phalloidin, which delineated the actin structure of hair cells and supporting cells at their apical surface. Whole mount preparations of basilar papillae stained by immunocytochemistry revealed in both males and females an abundant aromatase distribution in the cytoplasm of hair cells, while ERalpha was identified in the nuclei of hair cells and of underlying supporting cells. Double-labeled preparations confirmed the extensive co-localization of aromatase and ERalpha in the vast majority of the hair cells. These results are consistent with studies on non-avian species, suggesting a role for estrogens in auditory function. These findings are also consistent with the notion that estrogens may contribute to a sex difference in hearing. To our knowledge, this is the first demonstration of the presence of aromatase and of the co-localization of aromatase and ERalpha in the sensory epithelium of the inner ear in any animal model.


Assuntos
Aromatase/metabolismo , Orelha Interna/metabolismo , Receptor alfa de Estrogênio/metabolismo , Tentilhões/metabolismo , Animais , Orelha Interna/anatomia & histologia , Feminino , Tentilhões/anatomia & histologia , Células Ciliadas Auditivas/metabolismo , Imuno-Histoquímica , Masculino , Microscopia de Fluorescência , Órgão Espiral/anatomia & histologia , Órgão Espiral/metabolismo , Caracteres Sexuais
11.
Hear Res ; 240(1-2): 102-11, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18514449

RESUMO

WD40 repeat 1 protein (WDR1) was first reported in the acoustically injured chicken inner ear, and bioinformatics revealed that WDR1 has numerous WD40 repeats, important for protein-protein interactions. It has significant homology to actin interacting protein 1 (Aip1) in several lower species such as yeast, roundworm, fruitfly and frog. Several studies have shown that Aip1 binds cofilin/actin depolymerizing factor, and that these interactions are pivotal for actin disassembly via actin filament severing and actin monomer capping. However, the role of WDR1 in auditory function has yet to be determined. WDR1 is typically restricted to hair cells of the normal avian basilar papilla, but is redistributed towards supporting cells after acoustic overstimulation, suggesting that WDR1 may be involved in inner ear response to noise stress. One aim of the present study was to resolve the question as to whether stress factors, other than intense sound, could induce changes in WDR1 presence in the affected avian inner ear. Several techniques were used to assess WDR1 presence in the inner ears of songbird strains, including Belgian Waterslager (BW) canary, an avian strain with degenerative hearing loss thought to have a genetic basis. Reverse transcription, followed by polymerase chain reactions with WDR1-specific primers, confirmed WDR1 presence in the basilar papillae of adult BW, non-BW canaries, and zebra finches. Confocal microscopy examinations, following immunocytochemistry with anti-WDR1 antibody, localized WDR1 to the hair cell cytoplasm along the avian sensory epithelium. In addition, little, if any, staining by anti-WDR1 antibody was observed among supporting cells in the chicken or songbird ear. The present observations confirm and extend the early findings of WDR1 localization in hair cells, but not in supporting cells, in the normal avian basilar papilla. However, unlike supporting cells in the acoustically damaged chicken basilar papilla, the inner ear of the BW canary showed little, if any, WDR1 up-regulation in supporting cells. This may be due to the fact that the BW canary already has established hearing loss and/or to the possibility that the mechanism(s) involved in BW hearing loss may not be related to WDR1.


Assuntos
Doenças das Aves/metabolismo , Perda Auditiva/metabolismo , Proteínas dos Microfilamentos/análise , Órgão Espiral/química , Aves Canoras , Animais , Doenças das Aves/genética , Doenças das Aves/fisiopatologia , Western Blotting , Canários , Galinhas , Biologia Computacional , Tentilhões , Células Ciliadas Auditivas/química , Perda Auditiva/genética , Perda Auditiva/fisiopatologia , Perda Auditiva/veterinária , Testes Auditivos/veterinária , Imuno-Histoquímica , Células Labirínticas de Suporte/química , Proteínas dos Microfilamentos/genética , Microscopia Confocal , Órgão Espiral/fisiopatologia , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico
12.
Cell Motil Cytoskeleton ; 62(3): 141-56, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16206169

RESUMO

Microtubules (MTs) are polymers of alpha and beta tubulin dimers that mediate many cellular functions, including the establishment and maintenance of cell shape. The dynamic properties of MTs may be influenced by tubulin isotype, posttranslational modifications of tubulin, and interaction with microtubule-associated proteins (MAPs). End-binding (EB) family proteins affect MT dynamics by stabilizing MTs, and are the only MAPs reported that bind MTs via a calponin-homology (CH) domain (J Biol Chem 278 (2003) 49721-49731; J Cell Biol 149 (2000) 761-766). Here, we describe a novel 27 kDa protein identified from an inner ear organ of Corti library. Structural homology modeling demonstrates a CH domain in this protein similar to EB proteins. Northern and Western blottings confirmed expression of this gene in other tissues, including brain, lung, and testis. In the organ of Corti, this protein localized throughout distinctively large and well-ordered MT bundles that support the elongated body of mechanically stiff pillar cells of the auditory sensory epithelium. When ectopically expressed in Cos-7 cells, this protein localized along cytoplasmic MTs, promoted MT bundling, and efficiently stabilized MTs against depolymerization in response to high concentration of nocodazole and cold temperature. We propose that this protein, designated CLAMP, is a novel MAP and represents a new member of the CH domain protein family.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Sequência de Aminoácidos , Animais , Northern Blotting , Células COS , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Chlorocebus aethiops , Clonagem Molecular , Sequência Conservada , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Perfilação da Expressão Gênica , Humanos , Camundongos , Proteínas dos Microfilamentos , Microscopia Eletrônica de Varredura , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Órgão Espiral/metabolismo , Reação em Cadeia da Polimerase , Ratos , Homologia de Sequência de Aminoácidos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Calponinas
13.
Hear Res ; 184(1-2): 27-40, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14553901

RESUMO

Hair cells are specialized mechanoreceptors common to auditory and vestibular sensory organs of mammalian and non-mammalian species. Different hair cells are believed to share common features related to their mechanosensory function. It has been shown that hair cells possess various forms of motile properties that enhance their receptor function. Membrane-based electromotility is a form of hair cell motility observed in isolated outer hair cells (OHCs) of the cochlea. A novel membrane protein, prestin, recently cloned from gerbil and rat tissues, is presumably responsible for electromotility. We cloned prestin from mouse organ of Corti and confirmed strong homology of this protein among different rodent species. We explored whether or not prestin is present in hair cells of the vestibular system. Using reverse transcription-polymerase chain reaction, we demonstrated that prestin is expressed in mouse and rat auditory and vestibular organs, but not in chicken auditory periphery. In situ hybridization and immunolocalization studies confirmed the presence of prestin in OHCs as well as in vestibular hair cells (VHCs) of rodent saccule, utricle and crista ampullaris. However, in the VHCs, staining of varying intensity with anti-prestin antibodies was observed in the cytoplasm, but not in the lateral plasma membrane or in the stereociliary membrane. Whole-cell patch-clamp recordings showed that VHCs do not possess the voltage-dependent capacitance associated with membrane-based electromotility. We conclude that although prestin is expressed in VHCs, it is unlikely that it supports the form of somatic motility observed in OHCs.


Assuntos
Vias Auditivas/metabolismo , Camundongos/metabolismo , Proteínas/metabolismo , Ratos/metabolismo , Vestíbulo do Labirinto/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte de Ânions , Movimento Celular/fisiologia , Galinhas , Clonagem Molecular , Capacitância Elétrica , Eletrofisiologia , Células Ciliadas Auditivas/fisiologia , Células Ciliadas Auditivas Externas/fisiologia , Proteínas Motores Moleculares , Dados de Sequência Molecular , Órgão Espiral/metabolismo , Proteínas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Transportadores de Sulfato
14.
J Comp Neurol ; 448(4): 399-409, 2002 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-12115702

RESUMO

Auditory hair cells of birds, unlike hair cells in the mammalian organ of Corti, can regenerate following sound-induced loss. We have identified several genes that are upregulated following such an insult. One gene, WDR1, encodes the vertebrate homologue of actin-interacting protein 1, which interacts with actin depolymerization factor (ADF) to enhance the rate of actin filament cleavage. We examined WDR1 expression in the developing, mature, and noise-damaged chick cochlea by in situ hybridization and immunocytochemistry. In the mature cochlea, WDR1 mRNA was detected in hair cells, homogene cells, and cuboidal cells, all of which contain high levels of F-actin. In the developing inner ear, WDR1 mRNA was detected in homogene cells and cuboidal cells by embryonic day 7, in the undifferentiated sensory epithelium by day 9, and in hair cells at embryonic day 16. We also demonstrated colocalization of WDR1, ADF, and F-actin in all three cell types in the normal and noise-damaged cochlea. Immediately after acoustic overstimulation, WDR1 mRNA was seen in supporting cells. These cells contribute to the structural integrity of the basilar papilla, the maintenance of the ionic barrier at the reticular lamina, and the generation of new hair cells. These results indicate that one of the immediate responses of the supporting cell after noise exposure is to induce WDR1 gene expression and thus to increase the rate of actin filament turnover. These results suggest that WDR1 may play a role either in restoring cytoskeletal integrity in supporting cells or in a cell signaling pathway required for regeneration.


Assuntos
Animais Recém-Nascidos/metabolismo , Galinhas/metabolismo , Cóclea/metabolismo , Perda Auditiva Provocada por Ruído/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fatores de Despolimerização de Actina , Actinas/metabolismo , Animais , Embrião de Galinha/metabolismo , Cóclea/embriologia , Destrina , Células Ciliadas Auditivas/metabolismo , Valores de Referência , Distribuição Tecidual
15.
Noise Health ; 3(11): 19-35, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-12689446

RESUMO

Acoustic overstimulation has very different outcomes in birds and mammals. When noise exposure kills hair cells in birds, these cells can regenerate and hearing will recover. In mammals, however, the hair cell loss, and resulting hearing loss, is permanent. Changes in gene expression form the basis for important biological processes, including repair, regeneration, and plasticity. We are therefore using a battery of molecular approaches to identify and compare changes in gene expression following noise trauma in birds and mammals. Both differential display and subtractive hybridisation were used to identify genes whose expression increased in the chick basilar papilla immediately following exposure to an octave band noise (118 dB, centre frequency 1.5 kHz) for 4-6 hr. Among those upregulated genes were two involved in actin signalling: the CDC42 gene encoding a Rho GTPase, and WDR1, which encodes a protein involved in actin dynamics. A third gene, UBE3B, encodes an E3 ubiquitin ligase involved in protein turnover. A fourth gene encodes a cystein-rich secreted protein that may interact with calcium channels. To examine the mammalian response, gene microarrays on nylon membranes (Clontech Atlas Gene Arrays) were used to examine global changes in gene expression 30 minutes after TTS (110 dB broadband noise 50% duty cycle) or PTS (125 dB, 100% duty cycle) noise overstimulation (each for 90 minutes) in the rat cochlea. Several genes, including classic immediate early response genes such as c-fos, EGR1/NGFI-A, and NGFI-B, were upregulated at this early time point following the PTS exposure, but were not upregulated following the TTS exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...