Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 12(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38543882

RESUMO

During the COVID-19 pandemic, the early emergence of viral variants repeatedly undermined the effects of vaccination. Our aim here is to explore strategies for improving spike vaccine gene antigenicity by merging mutations from different variants of concern (VOCs) in a single vaccine gene. To this end, newly developed recombinant vaccine genes were designed, cloned into adenoviral vectors, and applied to C57BL/6 mice; then, serum-neutralizing antibodies against the wildtype SARS-CoV-2 strains were determined in neutralization assays. The merger of mutations from different variants of concern (alpha, beta, gamma, and delta) in a single recombinant spike-based vaccine gene provided a substantial improvement in neutralizing immunity to all variants of concern, including the omicron strains. To date, only unmodified spike genes of the original SARS-CoV-2 Wuhan strain (B.1) or dominant variants (BA.1, BA.5, and XBB.1.5) have been used as vaccine genes. The employment of unmodified vaccine genes is afflicted by limited cross-protection among variant strains. In contrast, recombinant vaccine genes that combine mutations from different strains in a single gene hold the potential to broaden and improve immune protection and might help to reduce the need for frequent vaccine adaptations in the future.

2.
Nat Commun ; 15(1): 995, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307868

RESUMO

The development of effective SARS-CoV-2 vaccines has been essential to control COVID-19, but significant challenges remain. One problem is intramuscular administration, which does not induce robust mucosal immune responses in the upper airways-the primary site of infection and virus shedding. Here we compare the efficacy of a mucosal, replication-competent yet fully attenuated virus vaccine, sCPD9-ΔFCS, and the monovalent mRNA vaccine BNT162b2 in preventing transmission of SARS-CoV-2 variants B.1 and Omicron BA.5 in two scenarios. Firstly, we assessed the protective efficacy of the vaccines by exposing vaccinated male Syrian hamsters to infected counterparts. Secondly, we evaluated transmission of the challenge virus from vaccinated and subsequently challenged male hamsters to naïve contacts. Our findings demonstrate that the live-attenuated vaccine (LAV) sCPD9-ΔFCS significantly outperformed the mRNA vaccine in preventing virus transmission in both scenarios. Our results provide evidence for the advantages of locally administered LAVs over intramuscularly administered mRNA vaccines in preventing infection and reducing virus transmission.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Cricetinae , Masculino , Humanos , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas de mRNA , SARS-CoV-2 , Mesocricetus , Anticorpos Antivirais , Anticorpos Neutralizantes
3.
Front Pharmacol ; 14: 1214351, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564181

RESUMO

The occurrence of immune-evasive SARS-CoV-2 strains emphasizes the importance to search for broad-acting antiviral compounds. Our previous in vitro study showed that Pelargonium sidoides DC. root extract EPs® 7630 has combined antiviral and immunomodulatory properties in SARS-CoV-2-infected human lung cells. Here we assessed in vivo effects of EPs® 7630 in SARS-CoV-2-infected hamsters, and investigated properties of EPs® 7630 and its functionally relevant constituents in context of phenotypically distinct SARS-CoV-2 variants. We show that EPs® 7630 reduced viral load early in the course of infection and displayed significant immunomodulatory properties positively modulating disease progression in hamsters. In addition, we find that EPs® 7630 differentially inhibits SARS-CoV-2 variants in nasal and bronchial human airway epithelial cells. Antiviral effects were more pronounced against Omicron BA.2 compared to B.1 and Delta, the latter two preferring TMPRSS2-mediated fusion with the plasma membrane for cell entry instead of receptor-mediated low pH-dependent endocytosis. By using SARS-CoV-2 Spike VSV-based pseudo particles (VSVpp), we confirm higher EPs® 7630 activity against Omicron Spike-VSVpp, which seems independent of the serine protease TMPRSS2, suggesting that EPs® 7630 targets endosomal entry. We identify at least two molecular constituents of EPs® 7630, i.e., (-)-epigallocatechin and taxifolin with antiviral effects on SARS-CoV-2 replication and cell entry. In summary, our study shows that EPs® 7630 ameliorates disease outcome in SARS-CoV-2-infected hamsters and has enhanced activity against Omicron, apparently by limiting late endosomal SARS-CoV-2 entry.

4.
Front Immunol ; 14: 1166765, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520530

RESUMO

Introduction: The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the danger posed by human coronaviruses. Rapid emergence of immunoevasive variants and waning antiviral immunity decrease the effect of the currently available vaccines, which aim at induction of neutralizing antibodies. In contrast, T cells are marginally affected by antigen evolution although they represent the major mediators of virus control and vaccine protection against virus-induced disease. Materials and methods: We generated a multi-epitope vaccine (PanCoVac) that encodes the conserved T cell epitopes from all structural proteins of coronaviruses. PanCoVac contains elements that facilitate efficient processing and presentation of PanCoVac-encoded T cell epitopes and can be uploaded to any available vaccine platform. For proof of principle, we cloned PanCoVac into a non-integrating lentivirus vector (NILV-PanCoVac). We chose Roborovski dwarf hamsters for a first step in evaluating PanCoVac in vivo. Unlike mice, they are naturally susceptible to SARS-CoV-2 infection. Moreover, Roborovski dwarf hamsters develop COVID-19-like disease after infection with SARS-CoV-2 enabling us to look at pathology and clinical symptoms. Results: Using HLA-A*0201-restricted reporter T cells and U251 cells expressing a tagged version of PanCoVac, we confirmed in vitro that PanCoVac is processed and presented by HLA-A*0201. As mucosal immunity in the respiratory tract is crucial for protection against respiratory viruses such as SARS-CoV-2, we tested the protective effect of single-low dose of NILV-PanCoVac administered via the intranasal (i.n.) route in the Roborovski dwarf hamster model of COVID-19. After infection with ancestral SARS-CoV-2, animals immunized with a single-low dose of NILV-PanCoVac i.n. did not show symptoms and had significantly decreased viral loads in the lung tissue. This protective effect was observed in the early phase (2 days post infection) after challenge and was not dependent on neutralizing antibodies. Conclusion: PanCoVac, a multi-epitope vaccine covering conserved T cell epitopes from all structural proteins of coronaviruses, might protect from severe disease caused by SARS-CoV-2 variants and future pathogenic coronaviruses. The use of (HLA-) humanized animal models will allow for further efficacy studies of PanCoVac-based vaccines in vivo.


Assuntos
COVID-19 , Vacinas Virais , Cricetinae , Humanos , Animais , Camundongos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas contra COVID-19 , Epitopos de Linfócito T , Administração Intranasal , Anticorpos Neutralizantes , Antígenos HLA-A
5.
Mol Ther ; 31(8): 2391-2407, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37263272

RESUMO

Live attenuated vaccines (LAVs) administered via the mucosal route may offer better control of the COVID-19 pandemic than non-replicating vaccines injected intramuscularly. Conceptionally, LAVs have several advantages, including presentation of the entire antigenic repertoire of the virus, and the induction of strong mucosal immunity. Thus, immunity induced by LAV could offer superior protection against future surges of COVID-19 cases caused by emerging SARS-CoV-2 variants. However, LAVs carry the risk of unintentional transmission. To address this issue, we investigated whether transmission of a SARS-CoV-2 LAV candidate can be blocked by removing the furin cleavage site (FCS) from the spike protein. The level of protection and immunity induced by the attenuated virus with the intact FCS was virtually identical to the one induced by the attenuated virus lacking the FCS. Most importantly, removal of the FCS completely abolished horizontal transmission of vaccine virus between cohoused hamsters. Furthermore, the vaccine was safe in immunosuppressed animals and showed no tendency to recombine in vitro or in vivo with a SARS-CoV-2 field strain. These results indicate that removal of the FCS from SARS-CoV-2 LAV is a promising strategy to increase vaccine safety and prevent vaccine transmission without compromising vaccine efficacy.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Cricetinae , Humanos , COVID-19/prevenção & controle , Pandemias , SARS-CoV-2 , Vacinas Atenuadas , Anticorpos Antivirais , Anticorpos Neutralizantes
6.
Angew Chem Int Ed Engl ; 62(29): e202304010, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37130003

RESUMO

Mucins are the key component of the defensive mucus barrier. They are extended fibers of very high molecular weight with diverse biological functions depending strongly on their specific structural parameters. Here, we present a mucin-inspired nanostructure, produced via a synthetic methodology to prepare methacrylate-based dendronized polysulfates (MIP-1) on a multi gram-scale with high molecular weight (MW=450 kDa) and thiol end-functionalized mucin-inspired polymer (MIP) via RAFT polymerization. Cryo-electron tomography (Cryo-ET) analysis of MIP-1 confirmed a mucin-mimetic wormlike single-chain fiber structure (length=144±59 nm) in aqueous solution. This biocompatible fiber showed promising activity against SARS-CoV-2 and its mutant strain, with a remarkable low half maximal (IC50 ) inhibitory concentration (IC50 =10.0 nM). Additionally, we investigate the impact of fiber length on SARS-CoV-2 inhibition by testing other functional polymers (MIPs) of varying fiber lengths.


Assuntos
COVID-19 , Impressão Molecular , Humanos , Mucinas , SARS-CoV-2 , Polímeros/farmacologia , Polímeros/química , Impressão Molecular/métodos
7.
Nat Microbiol ; 8(5): 860-874, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37012419

RESUMO

Vaccines play a critical role in combating the COVID-19 pandemic. Future control of the pandemic requires improved vaccines with high efficacy against newly emerging SARS-CoV-2 variants and the ability to reduce virus transmission. Here we compare immune responses and preclinical efficacy of the mRNA vaccine BNT162b2, the adenovirus-vectored spike vaccine Ad2-spike and the live-attenuated virus vaccine candidate sCPD9 in Syrian hamsters, using both homogeneous and heterologous vaccination regimens. Comparative vaccine efficacy was assessed by employing readouts from virus titrations to single-cell RNA sequencing. Our results show that sCPD9 vaccination elicited the most robust immunity, including rapid viral clearance, reduced tissue damage, fast differentiation of pre-plasmablasts, strong systemic and mucosal humoral responses, and rapid recall of memory T cells from lung tissue after challenge with heterologous SARS-CoV-2. Overall, our results demonstrate that live-attenuated vaccines offer advantages over currently available COVID-19 vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , Vacinas Atenuadas , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Vacina BNT162 , Pandemias , Mesocricetus
8.
iScience ; 26(4): 106323, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36925720

RESUMO

The recurrent emerging of novel viral variants of concern (VOCs) with evasion of preexisting antibody immunity upholds severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) case numbers and maintains a persistent demand for updated therapies. We selected the patient-derived antibody CV38-142 based on its potency and breadth against the VOCs Alpha, Beta, Gamma, and Delta for preclinical development into a therapeutic. CV38-142 showed in vivo efficacy in a Syrian hamster VOC infection model after post-exposure and therapeutic application and revealed a favorable safety profile in a human protein library screen and tissue cross-reactivity study. Although CV38-142 targets the same viral surface as sotrovimab, which maintains activity against Omicron, CV38-142 did not neutralize the Omicron lineages BA.1 and BA.2. These results highlight the contingencies of developing antibody therapeutics in the context of antigenic drift and reinforce the need to develop broadly neutralizing variant-proof antibodies against SARS-CoV-2.

9.
Small ; 19(15): e2206154, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36651127

RESUMO

As virus outbreaks continue to pose a challenge, a nonspecific viral inhibitor can provide significant benefits, especially against respiratory viruses. Polyglycerol sulfates recently emerge as promising agents that mediate interactions between cells and viruses through electrostatics, leading to virus inhibition. Similarly, hydrophobic C60 fullerene can prevent virus infection via interactions with hydrophobic cavities of surface proteins. Here, two strategies are combined to inhibit infection of SARS-CoV-2 variants in vitro. Effective inhibitory concentrations in the millimolar range highlight the significance of bare fullerene's hydrophobic moiety and electrostatic interactions of polysulfates with surface proteins of SARS-CoV-2. Furthermore, microscale thermophoresis measurements support that fullerene linear polyglycerol sulfates interact with the SARS-CoV-2 virus via its spike protein, and highlight importance of electrostatic interactions within it. All-atom molecular dynamics simulations reveal that the fullerene binding site is situated close to the receptor binding domain, within 4 nm of polyglycerol sulfate binding sites, feasibly allowing both portions of the material to interact simultaneously.


Assuntos
COVID-19 , Fulerenos , Humanos , SARS-CoV-2 , Fulerenos/farmacologia , Ligação Proteica
10.
Nat Biotechnol ; 40(12): 1845-1854, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35864170

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with potential resistance to existing drugs emphasizes the need for new therapeutic modalities with broad variant activity. Here we show that ensovibep, a trispecific DARPin (designed ankyrin repeat protein) clinical candidate, can engage the three units of the spike protein trimer of SARS-CoV-2 and inhibit ACE2 binding with high potency, as revealed by cryo-electron microscopy analysis. The cooperative binding together with the complementarity of the three DARPin modules enable ensovibep to inhibit frequent SARS-CoV-2 variants, including Omicron sublineages BA.1 and BA.2. In Roborovski dwarf hamsters infected with SARS-CoV-2, ensovibep reduced fatality similarly to a standard-of-care monoclonal antibody (mAb) cocktail. When used as a single agent in viral passaging experiments in vitro, ensovibep reduced the emergence of escape mutations in a similar fashion to the same mAb cocktail. These results support further clinical evaluation of ensovibep as a broad variant alternative to existing targeted therapies for Coronavirus Disease 2019 (COVID-19).


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , SARS-CoV-2/genética , Proteínas de Repetição de Anquirina Projetadas , Microscopia Crioeletrônica , Anticorpos Monoclonais/uso terapêutico , Terapia Combinada de Anticorpos , Anticorpos Neutralizantes
11.
Mol Ther ; 30(5): 1952-1965, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35339689

RESUMO

For coronavirus disease 2019 (COVID-19), effective and well-understood treatment options are still scarce. Since vaccine efficacy is challenged by novel variants, short-lasting immunity, and vaccine hesitancy, understanding and optimizing therapeutic options remains essential. We aimed at better understanding the effects of two standard-of-care drugs, dexamethasone and anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies, on infection and host responses. By using two COVID-19 hamster models, pulmonary immune responses were analyzed to characterize effects of single or combinatorial treatments. Pulmonary viral burden was reduced by anti-SARS-CoV-2 antibody treatment and unaltered or increased by dexamethasone alone. Dexamethasone exhibited strong anti-inflammatory effects and prevented fulminant disease in a severe disease model. Combination therapy showed additive benefits with both anti-viral and anti-inflammatory potency. Bulk and single-cell transcriptomic analyses confirmed dampened inflammatory cell recruitment into lungs upon dexamethasone treatment and identified a specifically responsive subpopulation of neutrophils, thereby indicating a potential mechanism of action. Our analyses confirm the anti-inflammatory properties of dexamethasone and suggest possible mechanisms, validate anti-viral effects of anti-SARS-CoV-2 antibody treatment, and reveal synergistic effects of a combination therapy, thus informing more effective COVID-19 therapies.


Assuntos
Tratamento Farmacológico da COVID-19 , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anticorpos Antivirais , Antivirais , Cricetinae , Dexametasona/farmacologia , SARS-CoV-2 , Transcriptoma
12.
mBio ; 13(2): e0370521, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35229634

RESUMO

Combinations of direct-acting antivirals are needed to minimize drug resistance mutations and stably suppress replication of RNA viruses. Currently, there are limited therapeutic options against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and testing of a number of drug regimens has led to conflicting results. Here, we show that cobicistat, which is an FDA-approved drug booster that blocks the activity of the drug-metabolizing proteins cytochrome P450-3As (CYP3As) and P-glycoprotein (P-gp), inhibits SARS-CoV-2 replication. Two independent cell-to-cell membrane fusion assays showed that the antiviral effect of cobicistat is exerted through inhibition of spike protein-mediated membrane fusion. In line with this, incubation with low-micromolar concentrations of cobicistat decreased viral replication in three different cell lines including cells of lung and gut origin. When cobicistat was used in combination with remdesivir, a synergistic effect on the inhibition of viral replication was observed in cell lines and in a primary human colon organoid. This was consistent with the effects of cobicistat on two of its known targets, CYP3A4 and P-gp, the silencing of which boosted the in vitro antiviral activity of remdesivir in a cobicistat-like manner. When administered in vivo to Syrian hamsters at a high dose, cobicistat decreased viral load and mitigated clinical progression. These data highlight cobicistat as a therapeutic candidate for treating SARS-CoV-2 infection and as a potential building block of combination therapies for COVID-19. IMPORTANCE The lack of effective antiviral treatments against SARS-CoV-2 is a significant limitation in the fight against the COVID-19 pandemic. Single-drug regimens have so far yielded limited results, indicating that combinations of antivirals might be required, as previously seen for other RNA viruses. Our work introduces the drug booster cobicistat, which is approved by the FDA and typically used to potentiate the effect of anti-HIV protease inhibitors, as a candidate inhibitor of SARS-CoV-2 replication. Beyond its direct activity as an antiviral, we show that cobicistat can enhance the effect of remdesivir, which was one of the first drugs proposed for treatment of SARS-CoV-2. Overall, the dual action of cobicistat as a direct antiviral and a drug booster can provide a new approach to design combination therapies and rescue the activity of compounds that are only partially effective in monotherapy.


Assuntos
Tratamento Farmacológico da COVID-19 , Hepatite C Crônica , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Cobicistat , Cricetinae , Progressão da Doença , Humanos , Mesocricetus , Pandemias , SARS-CoV-2 , Carga Viral
13.
Sci Adv ; 7(49): eabk0172, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34851677

RESUMO

Vaccines are instrumental and indispensable in the fight against the COVID-19 pandemic. Several recent SARS-CoV-2 variants are more transmissible and evade infection- or vaccine-induced protection. We constructed live attenuated vaccine candidates by large-scale recoding of the SARS-CoV-2 genome and showed that the lead candidate, designated sCPD9, protects Syrian hamsters from a challenge with ancestral virus. Here, we assessed immunogenicity and protective efficacy of sCPD9 in the Roborovski dwarf hamster, a nontransgenic rodent species that is highly susceptible to SARS-CoV-2 and severe COVID-19­like disease. We show that a single intranasal vaccination with sCPD9 elicited strong cross-neutralizing antibody responses against four current SARS-CoV-2 variants of concern, B.1.1.7 (Alpha), B.1.351 (Beta), B.1.1.28.1 (Gamma), and B.1.617.2 (Delta). The sCPD9 vaccine offered complete protection from COVID-19­like disease caused by the ancestral SARS-CoV-2 variant B.1 and the two variants of concern B.1.1.7 and B.1.351.

14.
Viruses ; 13(11)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34835096

RESUMO

With the exception of inactivated vaccines, all SARS-CoV-2 vaccines currently used for clinical application focus on the spike envelope glycoprotein as a virus-specific antigen. Compared to other SARS-CoV-2 genes, mutations in the spike protein gene are more rapidly selected and spread within the population, which carries the risk of impairing the efficacy of spike-based vaccines. It is unclear to what extent the loss of neutralizing antibody epitopes can be compensated by cellular immune responses, and whether the use of other SARS-CoV-2 antigens might cause a more diverse immune response and better long-term protection, particularly in light of the continued evolution towards new SARS-CoV-2 variants. To address this question, we explored immunogenicity and protective effects of adenoviral vectors encoding either the full-length spike protein (S), the nucleocapsid protein (N), the receptor binding domain (RBD) or a hybrid construct of RBD and the membrane protein (M) in a highly susceptible COVID-19 hamster model. All adenoviral vaccines provided life-saving protection against SARS-CoV-2-infection. The most efficient protection was achieved after exposure to full-length spike. However, the nucleocapsid protein, which triggered a robust T-cell response but did not facilitate the formation of neutralizing antibodies, controlled early virus replication efficiently and prevented severe pneumonia. Although the full-length spike protein is an excellent target for vaccines, it does not appear to be the only option for future vaccine design.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Imunidade Celular , Imunidade Humoral , Imunogenicidade da Vacina , SARS-CoV-2/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/patologia , COVID-19/prevenção & controle , COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Cricetinae , Feminino , Inflamação , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos Endogâmicos C57BL , Fosfoproteínas/genética , Fosfoproteínas/imunologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia
15.
Viruses ; 13(10)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34696460

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected almost 200 million people worldwide and led to approximately 4 million deaths as of August 2021. Despite successful vaccine development, treatment options are limited. A promising strategy to specifically target viral infections is to suppress viral replication through RNA interference (RNAi). Hence, we designed eight small interfering RNAs (siRNAs) targeting the highly conserved 5'-untranslated region (5'-UTR) of SARS-CoV-2. The most promising candidate identified in initial reporter assays, termed siCoV6, targets the leader sequence of the virus, which is present in the genomic as well as in all subgenomic RNAs. In assays with infectious SARS-CoV-2, it reduced replication by two orders of magnitude and prevented the development of a cytopathic effect. Moreover, it retained its activity against the SARS-CoV-2 alpha variant and has perfect homology against all sequences of the delta variant that were analyzed by bioinformatic means. Interestingly, the siRNA was even highly active in virus replication assays with the SARS-CoV-1 family member. This work thus identified a very potent siRNA with a broad activity against various SARS-CoV viruses that represents a promising candidate for the development of new treatment options.


Assuntos
Antivirais/farmacologia , COVID-19/terapia , Interferência de RNA , RNA Interferente Pequeno/farmacologia , SARS-CoV-2/crescimento & desenvolvimento , Replicação Viral/efeitos dos fármacos , Regiões 5' não Traduzidas/genética , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Células HeLa , Humanos , RNA Interferente Pequeno/genética , SARS-CoV-2/genética , Células Vero , Replicação Viral/genética
16.
Nature ; 599(7884): 283-289, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34517409

RESUMO

Derailed cytokine and immune cell networks account for the organ damage and the clinical severity of COVID-19 (refs. 1-4). Here we show that SARS-CoV-2, like other viruses, evokes cellular senescence as a primary stress response in infected cells. Virus-induced senescence (VIS) is indistinguishable from other forms of cellular senescence and is accompanied by a senescence-associated secretory phenotype (SASP), which comprises pro-inflammatory cytokines, extracellular-matrix-active factors and pro-coagulatory mediators5-7. Patients with COVID-19 displayed markers of senescence in their airway mucosa in situ and increased serum levels of SASP factors. In vitro assays demonstrated macrophage activation with SASP-reminiscent secretion, complement lysis and SASP-amplifying secondary senescence of endothelial cells, which mirrored hallmark features of COVID-19 such as macrophage and neutrophil infiltration, endothelial damage and widespread thrombosis in affected lung tissue1,8,9. Moreover, supernatant from VIS cells, including SARS-CoV-2-induced senescence, induced neutrophil extracellular trap formation and activation of platelets and the clotting cascade. Senolytics such as navitoclax and a combination of dasatinib plus quercetin selectively eliminated VIS cells, mitigated COVID-19-reminiscent lung disease and reduced inflammation in SARS-CoV-2-infected hamsters and mice. Our findings mark VIS as a pathogenic trigger of COVID-19-related cytokine escalation and organ damage, and suggest that senolytic targeting of virus-infected cells is a treatment option against SARS-CoV-2 and perhaps other viral infections.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/patologia , COVID-19/virologia , Senescência Celular/efeitos dos fármacos , Terapia de Alvo Molecular , SARS-CoV-2/patogenicidade , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Animais , COVID-19/complicações , Linhagem Celular , Cricetinae , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Quercetina/farmacologia , Quercetina/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Trombose/complicações , Trombose/imunologia , Trombose/metabolismo
17.
Cell Rep ; 36(5): 109493, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34320400

RESUMO

Safe and effective vaccines are urgently needed to stop the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We construct a series of live attenuated vaccine candidates by large-scale recoding of the SARS-CoV-2 genome and assess their safety and efficacy in Syrian hamsters. Animals were vaccinated with a single dose of the respective recoded virus and challenged 21 days later. Two of the tested viruses do not cause clinical symptoms but are highly immunogenic and induce strong protective immunity. Attenuated viruses replicate efficiently in the upper but not in the lower airways, causing only mild pulmonary histopathology. After challenge, hamsters develop no signs of disease and rapidly clear challenge virus: at no time could infectious virus be recovered from the lungs of infected animals. The ease with which attenuated virus candidates can be produced and administered favors their further development as vaccines to combat the ongoing pandemic.


Assuntos
Vacinas contra COVID-19 , COVID-19/imunologia , COVID-19/prevenção & controle , Sistema Respiratório/patologia , Sistema Respiratório/virologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Animais , Chlorocebus aethiops , Edição de Genes , Genoma Viral , Humanos , Imunidade , Mesocricetus , Mutação , Pandemias/prevenção & controle , Vacinas Atenuadas , Células Vero , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...