Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 624(7992): 645-652, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38093014

RESUMO

People with diabetes feature a life-risking susceptibility to respiratory viral infection, including influenza and SARS-CoV-2 (ref. 1), whose mechanism remains unknown. In acquired and genetic mouse models of diabetes, induced with an acute pulmonary viral infection, we demonstrate that hyperglycaemia leads to impaired costimulatory molecule expression, antigen transport and T cell priming in distinct lung dendritic cell (DC) subsets, driving a defective antiviral adaptive immune response, delayed viral clearance and enhanced mortality. Mechanistically, hyperglycaemia induces an altered metabolic DC circuitry characterized by increased glucose-to-acetyl-CoA shunting and downstream histone acetylation, leading to global chromatin alterations. These, in turn, drive impaired expression of key DC effectors including central antigen presentation-related genes. Either glucose-lowering treatment or pharmacological modulation of histone acetylation rescues DC function and antiviral immunity. Collectively, we highlight a hyperglycaemia-driven metabolic-immune axis orchestrating DC dysfunction during pulmonary viral infection and identify metabolic checkpoints that may be therapeutically exploited in mitigating exacerbated disease in infected diabetics.


Assuntos
Células Dendríticas , Complicações do Diabetes , Diabetes Mellitus , Suscetibilidade a Doenças , Hiperglicemia , Pulmão , Viroses , Animais , Camundongos , Acetilcoenzima A/metabolismo , Acetilação , Cromatina/genética , Cromatina/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Complicações do Diabetes/imunologia , Complicações do Diabetes/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/imunologia , Diabetes Mellitus/metabolismo , Glucose/metabolismo , Histonas/metabolismo , Hiperglicemia/complicações , Hiperglicemia/imunologia , Hiperglicemia/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/virologia , Linfócitos T/imunologia , Viroses/complicações , Viroses/imunologia , Viroses/mortalidade , Vírus/imunologia , Modelos Animais de Doenças , Humanos
2.
Cancer Discov ; 13(7): 1616-1635, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-36972357

RESUMO

Multiple studies have identified metabolic changes within the tumor and its microenvironment during carcinogenesis. Yet, the mechanisms by which tumors affect the host metabolism are unclear. We find that systemic inflammation induced by cancer leads to liver infiltration of myeloid cells at early extrahepatic carcinogenesis. The infiltrating immune cells via IL6-pSTAT3 immune-hepatocyte cross-talk cause the depletion of a master metabolic regulator, HNF4α, consequently leading to systemic metabolic changes that promote breast and pancreatic cancer proliferation and a worse outcome. Preserving HNF4α levels maintains liver metabolism and restricts carcinogenesis. Standard liver biochemical tests can identify early metabolic changes and predict patients' outcomes and weight loss. Thus, the tumor induces early metabolic changes in its macroenvironment with diagnostic and potentially therapeutic implications for the host. SIGNIFICANCE: Cancer growth requires a permanent nutrient supply starting from early disease stages. We find that the tumor extends its effect to the host's liver to obtain nutrients and rewires the systemic and tissue-specific metabolism early during carcinogenesis. Preserving liver metabolism restricts tumor growth and improves cancer outcomes. This article is highlighted in the In This Issue feature, p. 1501.


Assuntos
Fígado , Neoplasias Pancreáticas , Humanos , Fígado/metabolismo , Carcinogênese/patologia , Hepatócitos , Neoplasias Pancreáticas/patologia , Imunidade Inata , Microambiente Tumoral
3.
Cell Rep ; 38(4): 110200, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35081339

RESUMO

The non-classical Major Histocompatibility Complex class II (MHCII) protein, H2-M, edits peptides bound to conventional MHCII in favor of stable peptide/MHCII (p/MHCII) complexes. Here, we show that H2-M deficiency affects B-1 cell survival, reduces cell renewal capacity, and alters immunoglobulin repertoire, allowing for the selection of cells specific for highly abundant epitopes, but not low-frequency epitopes. H2-M-deficient B-1 cells have shorter CDR3 length, higher content of positively charged amino acids, shorter junctional regions, less mutation frequency, and a skewed clonal distribution. Mechanistically, H2-M loss reduces plasma membrane p/MHCII association with B cell receptors (BCR) on B-1 cells and diminishes integrated BCR signal strength, a key determinant of B-1 cell selection, maturation, and maintenance. Thus, H2-M:MHCII interaction serves as a cell-intrinsic regulator of BCR signaling and influences the selection of the B-1 cell clonal repertoire.


Assuntos
Linfócitos B/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Animais , Ativação Linfocitária/imunologia , Camundongos
4.
Mol Cell Proteomics ; 21(3): 100204, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35085787

RESUMO

Major histocompatibility complex class II (MHC-II) antigen presentation underlies a wide range of immune responses in health and disease. However, how MHC-II antigen presentation is regulated by the peptide-loading catalyst HLA-DM (DM), its associated modulator, HLA-DO (DO), is incompletely understood. This is due largely to technical limitations: model antigen-presenting cell (APC) systems that express these MHC-II peptidome regulators at physiologically variable levels have not been described. Likewise, computational prediction tools that account for DO and DM activities are not presently available. To address these gaps, we created a panel of single MHC-II allele, HLA-DR4-expressing APC lines that cover a wide range of DO:DM ratio states. Using a combined immunopeptidomic and proteomic discovery strategy, we measured the effects DO:DM ratios have on peptide presentation by surveying over 10,000 unique DR4-presented peptides. The resulting data provide insight into peptide characteristics that influence their presentation with increasing DO:DM ratios. These include DM sensitivity, peptide abundance, binding affinity and motif, peptide length, and choice of binding register along the source protein. These findings have implications for designing improved HLA-II prediction algorithms and research strategies for dissecting the variety of functions that different APCs serve in the body.


Assuntos
Apresentação de Antígeno , Antígenos HLA-D , Antígenos de Histocompatibilidade Classe II , Proteômica , Células Apresentadoras de Antígenos , Linhagem Celular , Antígenos HLA-DR , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Peptídeos/metabolismo
5.
Hum Genet ; 140(10): 1471-1485, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34417872

RESUMO

Argininosuccinate lyase (ASL) is essential for the NO-dependent regulation of tyrosine hydroxylase (TH) and thus for catecholamine production. Using a conditional mouse model with loss of ASL in catecholamine neurons, we demonstrate that ASL is expressed in dopaminergic neurons in the substantia nigra pars compacta, including the ALDH1A1 + subpopulation that is pivotal for the pathogenesis of Parkinson disease (PD). Neuronal loss of ASL results in catecholamine deficiency, in accumulation and formation of tyrosine aggregates, in elevation of α-synuclein, and phenotypically in motor and cognitive deficits. NO supplementation rescues the formation of aggregates as well as the motor deficiencies. Our data point to a potential metabolic link between accumulations of tyrosine and seeding of pathological aggregates in neurons as initiators for the pathological processes involved in neurodegeneration. Hence, interventions in tyrosine metabolism via regulation of NO levels may be therapeutic beneficial for the treatment of catecholamine-related neurodegenerative disorders.


Assuntos
Família Aldeído Desidrogenase 1/genética , Família Aldeído Desidrogenase 1/metabolismo , Argininossuccinato Liase/genética , Argininossuccinato Liase/metabolismo , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Fenótipo , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo
7.
Nat Cancer ; 1(9): 894-908, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-35121952

RESUMO

Argininosuccinate synthase (ASS1) downregulation in different tumors has been shown to support cell proliferation and yet, in several common cancer subsets ASS1 expression associates with poor patient prognosis. Here we demonstrate that ASS1 expression under glucose deprivation is induced by c-MYC, providing survival benefit by increasing nitric oxide synthesis and activating the gluconeogenic enzymes pyruvate carboxylase and phosphoenolpyruvate carboxykinase by S-nitrosylation. The resulting increased flux through gluconeogenesis enhances serine, glycine and subsequently purine synthesis. Notably, high ASS1-expressing breast cancer mice do not respond to immune checkpoint inhibitors and patients with breast cancer with high ASS1 have more metastases. We further find that inhibiting purine synthesis increases pyrimidine to purine ratio, elevates expression of the immunoproteasome and significantly enhances the response of autologous primary CD8+ T cells to anti-PD-1. These results suggest that treating patients with high-ASS1 cancers with purine synthesis inhibition is beneficial and may also sensitize them to immune checkpoint inhibition therapy.


Assuntos
Argininossuccinato Sintase , Neoplasias da Mama , Animais , Argininossuccinato Sintase/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Inibidores de Checkpoint Imunológico , Camundongos , Purinas
8.
Oncogene ; 39(1): 164-175, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31462712

RESUMO

Citrin, encoded by SLC25A13 gene, is an inner mitochondrial transporter that is part of the malate-aspartate shuttle, which regulates the NAD+/NADH ratio between the cytosol and mitochondria. Citrullinemia type II (CTLN-II) is an inherited disorder caused by germline mutations in SLC25A13, manifesting clinically in growth failure that can be alleviated by dietary restriction of carbohydrates. The association of citrin with glycolysis and NAD+/NADH ratio led us to hypothesize that it may play a role in carcinogenesis. Indeed, we find that citrin is upregulated in multiple cancer types and is essential for supplementing NAD+ for glycolysis and NADH for oxidative phosphorylation. Consequently, citrin deficiency associates with autophagy, whereas its overexpression in cancer cells increases energy production and cancer invasion. Furthermore, based on the human deleterious mutations in citrin, we found a potential inhibitor of citrin that restricts cancerous phenotypes in cells. Collectively, our findings suggest that targeting citrin may be of benefit for cancer therapy.


Assuntos
Carcinogênese/genética , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Neoplasias/genética , Carboidratos/genética , Citrulinemia/genética , Citrulinemia/metabolismo , Citosol/metabolismo , Citosol/patologia , Regulação Neoplásica da Expressão Gênica/genética , Mutação em Linhagem Germinativa/genética , Glutamatos/farmacologia , Ácido Glutâmico/análogos & derivados , Ácido Glutâmico/farmacologia , Glicólise/genética , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fosforilação Oxidativa/efeitos dos fármacos
9.
Nat Commun ; 10(1): 5247, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748512

RESUMO

Individuals with narcolepsy suffer from abnormal sleep patterns due to loss of neurons that uniquely supply hypocretin (HCRT). Previous studies found associations of narcolepsy with the human leukocyte antigen (HLA)-DQ6 allele and T-cell receptor α (TRA) J24 gene segment and also suggested that in vitro-stimulated T cells can target HCRT. Here, we present evidence of in vivo expansion of DQ6-HCRT tetramer+/TRAJ24+/CD4+ T cells in DQ6+ individuals with and without narcolepsy. We identify related TRAJ24+ TCRαß clonotypes encoded by identical α/ß gene regions from two patients and two controls. TRAJ24-G allele+ clonotypes only expand in the two patients, whereas a TRAJ24-C allele+ clonotype expands in a control. A representative tetramer+/G-allele+ TCR shows signaling reactivity to the epitope HCRT87-97. Clonally expanded G-allele+ T cells exhibit an unconventional effector phenotype. Our analysis of in vivo expansion of HCRT-reactive TRAJ24+ cells opens an avenue for further investigation of the autoimmune contribution to narcolepsy development.


Assuntos
Autoimunidade/imunologia , Linfócitos T CD4-Positivos/imunologia , Narcolepsia/imunologia , Orexinas/imunologia , Animais , Autoimunidade/genética , Estudos de Casos e Controles , Proliferação de Células , Cristalografia por Raios X , Drosophila , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/imunologia , Humanos , Região de Junção de Imunoglobulinas/genética , Narcolepsia/genética , Tolerância Periférica , Fenótipo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia
10.
Sci Rep ; 9(1): 13877, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554902

RESUMO

B cell receptors and surface-displayed peptide/MHCII complexes constitute two key components of the B-cell machinery to sense signals and communicate with other cell types during antigen-triggered activation. However, critical pathways synergizing antigen-BCR interaction and antigenic peptide-MHCII presentation remain elusive. Here, we report the discovery of factors involved in establishing such synergy. We applied a single-cell measure coupled with super-resolution microscopy to investigate the integrated function of two lysosomal regulators for peptide loading, HLA-DM and HLA-DO. In model cell lines and human tonsillar B cells, we found that tunable DM/DO stoichiometry governs DMfree activity for exchange of placeholder CLIP peptides with high affinity MHCII ligands. Compared to their naïve counterparts, memory B cells with less DMfree concentrate a higher proportion of CLIP/MHCII in lysosomal compartments. Upon activation mediated by high affinity BCR, DO tuning is synchronized with antigen internalization and rapidly potentiates DMfree activity to optimize antigen presentation for T-cell recruitment.


Assuntos
Antígenos/imunologia , Linfócitos B/imunologia , Antígenos HLA-D/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Apresentação de Antígeno/imunologia , Linhagem Celular , Humanos , Memória Imunológica/imunologia , Lisossomos/imunologia
11.
Cancer Res ; 79(3): 518-533, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30573518

RESUMO

Downregulation of the urea cycle enzyme argininosuccinate synthase (ASS1) by either promoter methylation or by HIF1α is associated with increased metastasis and poor prognosis in multiple cancers. We have previously shown that in normoxic conditions, ASS1 downregulation facilitates cancer cell proliferation by increasing aspartate availability for pyrimidine synthesis by the enzyme complex CAD. Here we report that in hypoxia, ASS1 expression in cancerous cells is downregulated further by HIF1α-mediated induction of miR-224-5p, making the cells more invasive and dependent on upstream substrates of ASS1 for survival. ASS1 was downregulated under acidic conditions, and ASS1-depleted cancer cells maintained a higher intracellular pH (pHi), depended less on extracellular glutamine, and displayed higher glutathione levels. Depletion of substrates of urea cycle enzymes in ASS1-deficient cancers decreased cancer cell survival. Thus, ASS1 levels in cancer are differentially regulated in various environmental conditions to metabolically benefit cancer progression. Understanding these alterations may help uncover specific context-dependent cancer vulnerabilities that may be targeted for therapeutic purposes. SIGNIFICANCE: Cancer cells in an acidic or hypoxic environment downregulate the expression of the urea cycle enzyme ASS1, which provides them with a redox and pH advantage, resulting in better survival.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/3/518/F1.large.jpg.


Assuntos
Argininossuccinato Sintase/metabolismo , Neoplasias/metabolismo , Adolescente , Adulto , Animais , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Criança , Regulação para Baixo , Perfilação da Expressão Gênica , Glutamina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Neoplasias/enzimologia , Neoplasias/patologia , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Oxirredução , Adulto Jovem
12.
Cell ; 174(6): 1559-1570.e22, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30100185

RESUMO

The urea cycle (UC) is the main pathway by which mammals dispose of waste nitrogen. We find that specific alterations in the expression of most UC enzymes occur in many tumors, leading to a general metabolic hallmark termed "UC dysregulation" (UCD). UCD elicits nitrogen diversion toward carbamoyl-phosphate synthetase2, aspartate transcarbamylase, and dihydrooratase (CAD) activation and enhances pyrimidine synthesis, resulting in detectable changes in nitrogen metabolites in both patient tumors and their bio-fluids. The accompanying excess of pyrimidine versus purine nucleotides results in a genomic signature consisting of transversion mutations at the DNA, RNA, and protein levels. This mutational bias is associated with increased numbers of hydrophobic tumor antigens and a better response to immune checkpoint inhibitors independent of mutational load. Taken together, our findings demonstrate that UCD is a common feature of tumors that profoundly affects carcinogenesis, mutagenesis, and immunotherapy response.


Assuntos
Genômica , Metabolômica , Neoplasias/patologia , Ureia/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Animais , Aspartato Carbamoiltransferase/genética , Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Linhagem Celular Tumoral , Di-Hidro-Orotase/genética , Di-Hidro-Orotase/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Proteínas de Transporte da Membrana Mitocondrial , Neoplasias/metabolismo , Ornitina Carbamoiltransferase/antagonistas & inibidores , Ornitina Carbamoiltransferase/genética , Ornitina Carbamoiltransferase/metabolismo , Fosforilação/efeitos dos fármacos , Pirimidinas/biossíntese , Pirimidinas/química , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
13.
Nature ; 560(7718): E28, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30069041

RESUMO

In Extended Data Fig. 1a of this Letter, the flow cytometry plot depicting the surface phenotype of AML sample DD08 was a duplicate of the plot for AML sample DD06. Supplementary Data 4 has been added to the Supplementary Information of the original Letter to clarify the proteome data acquisition and presentation. The original Letter has been corrected online.

14.
Nature ; 551(7680): 384-388, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144447

RESUMO

The branched-chain amino acid (BCAA) pathway and high levels of BCAA transaminase 1 (BCAT1) have recently been associated with aggressiveness in several cancer entities. However, the mechanistic role of BCAT1 in this process remains largely uncertain. Here, by performing high-resolution proteomic analysis of human acute myeloid leukaemia (AML) stem-cell and non-stem-cell populations, we find the BCAA pathway enriched and BCAT1 protein and transcripts overexpressed in leukaemia stem cells. We show that BCAT1, which transfers α-amino groups from BCAAs to α-ketoglutarate (αKG), is a critical regulator of intracellular αKG homeostasis. Further to its role in the tricarboxylic acid cycle, αKG is an essential cofactor for αKG-dependent dioxygenases such as Egl-9 family hypoxia inducible factor 1 (EGLN1) and the ten-eleven translocation (TET) family of DNA demethylases. Knockdown of BCAT1 in leukaemia cells caused accumulation of αKG, leading to EGLN1-mediated HIF1α protein degradation. This resulted in a growth and survival defect and abrogated leukaemia-initiating potential. By contrast, overexpression of BCAT1 in leukaemia cells decreased intracellular αKG levels and caused DNA hypermethylation through altered TET activity. AML with high levels of BCAT1 (BCAT1high) displayed a DNA hypermethylation phenotype similar to cases carrying a mutant isocitrate dehydrogenase (IDHmut), in which TET2 is inhibited by the oncometabolite 2-hydroxyglutarate. High levels of BCAT1 strongly correlate with shorter overall survival in IDHWTTET2WT, but not IDHmut or TET2mut AML. Gene sets characteristic for IDHmut AML were enriched in samples from patients with an IDHWTTET2WTBCAT1high status. BCAT1high AML showed robust enrichment for leukaemia stem-cell signatures, and paired sample analysis showed a significant increase in BCAT1 levels upon disease relapse. In summary, by limiting intracellular αKG, BCAT1 links BCAA catabolism to HIF1α stability and regulation of the epigenomic landscape, mimicking the effects of IDH mutations. Our results suggest the BCAA-BCAT1-αKG pathway as a therapeutic target to compromise leukaemia stem-cell function in patients with IDHWTTET2WT AML.


Assuntos
Metilação de DNA , Isocitrato Desidrogenase/genética , Ácidos Cetoglutáricos/metabolismo , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/metabolismo , Transaminases/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Proliferação de Células , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Epistasia Genética , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Isocitrato Desidrogenase/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/metabolismo , Camundongos , Terapia de Alvo Molecular , Mutação , Células-Tronco Neoplásicas/patologia , Prognóstico , Proteólise , Proteômica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transaminases/deficiência , Transaminases/genética
15.
PLoS One ; 12(8): e0183594, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28832681

RESUMO

Monocytes play a critical role in the innate and adaptive immune systems, performing phagocytosis, presenting antigen, and producing cytokines. They are a heterogeneous population that has been divided in humans into classical, intermediate, and non-classical subsets, but the roles of these subsets are incompletely understood. In this study, we investigated the expression patterns of MHC class II (MHCII) and associated molecules and find that the intermediate monocytes express the highest levels of the MHC molecules, HLA-DR (tested in n = 30 samples), HLA-DP (n = 30), and HLA-DQ (n = 10). HLA-DM (n = 30), which catalyzes the peptide exchange on the MHC molecules, is also expressed at the highest levels in intermediate monocytes. To measure HLA-DM function, we measured levels of MHCII-bound CLIP (class II invariant chain peptide, n = 23), which is exchanged for other peptides by HLA-DM. We calculated CLIP:MHCII ratios to normalize CLIP levels to MHCII levels, and found that intermediate monocytes have the lowest CLIP:MHCII ratio. We isolated the different monocyte subsets (in a total of 7 samples) and analyzed their responses to selected cytokines as model of monocyte activation: two M1-polarizing cytokines (IFNγ, GM-CSF), an M2-polarizing cytokine (IL-4) and IL-10. Classical monocytes exhibit the largest increases in class II pathway expression in response to stimulatory cytokines (IFNγ, GM-CSF, IL-4). All three subsets decrease HLA-DR levels after IL-10 exposure. Our findings argue that intermediate monocytes are the most efficient constitutive antigen presenting subset, that classical monocytes are recruited into an antigen presentation role during inflammatory responses and that IL-10 negatively regulates this function across all subsets.


Assuntos
Citocinas/fisiologia , Antígenos de Histocompatibilidade Classe II/imunologia , Monócitos/imunologia , Adulto , Citometria de Fluxo , Humanos , Subpopulações de Linfócitos
16.
Front Immunol ; 8: 319, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28386257

RESUMO

Mature B lymphocytes (B cells) recognize antigens using their B cell receptor (BCR) and are activated to become antibody-producing cells. In addition, and integral to the development of a high-affinity antibodies, B cells utilize the specialized major histocompatibility complex class II (MHCII) antigen presentation pathway to process BCR-bound and internalized protein antigens and present selected peptides in complex with MHCII to CD4+ T cells. This interaction influences the fate of both types of lymphocytes and shapes immune outcomes. Specific, effective, and optimally timed antigen presentation by B cells requires well-controlled intracellular machinery, often regulated by the combined effects of several molecular events. Here, we delineate and summarize these events in four steps along the antigen presentation pathway: (1) antigen capture and uptake by B cells; (2) intersection of internalized antigen/BCRs complexes with MHCII in peptide-loading compartments; (3) generation and regulation of MHCII/peptide complexes; and (4) exocytic transport for presentation of MHCII/peptide complexes at the surface of B cells. Finally, we discuss modulation of the MHCII presentation pathway across B cell development and maturation to effector cells, with an emphasis on the shaping of the MHCII/peptide repertoire by two key antigen presentation regulators in B cells: HLA-DM and HLA-DO.

17.
Nature ; 527(7578): 379-383, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26560030

RESUMO

Cancer cells hijack and remodel existing metabolic pathways for their benefit. Argininosuccinate synthase (ASS1) is a urea cycle enzyme that is essential in the conversion of nitrogen from ammonia and aspartate to urea. A decrease in nitrogen flux through ASS1 in the liver causes the urea cycle disorder citrullinaemia. In contrast to the well-studied consequences of loss of ASS1 activity on ureagenesis, the purpose of its somatic silencing in multiple cancers is largely unknown. Here we show that decreased activity of ASS1 in cancers supports proliferation by facilitating pyrimidine synthesis via CAD (carbamoyl-phosphate synthase 2, aspartate transcarbamylase, and dihydroorotase complex) activation. Our studies were initiated by delineating the consequences of loss of ASS1 activity in humans with two types of citrullinaemia. We find that in citrullinaemia type I (CTLN I), which is caused by deficiency of ASS1, there is increased pyrimidine synthesis and proliferation compared with citrullinaemia type II (CTLN II), in which there is decreased substrate availability for ASS1 caused by deficiency of the aspartate transporter citrin. Building on these results, we demonstrate that ASS1 deficiency in cancer increases cytosolic aspartate levels, which increases CAD activation by upregulating its substrate availability and by increasing its phosphorylation by S6K1 through the mammalian target of rapamycin (mTOR) pathway. Decreasing CAD activity by blocking citrin, the mTOR signalling, or pyrimidine synthesis decreases proliferation and thus may serve as a therapeutic strategy in multiple cancers where ASS1 is downregulated. Our results demonstrate that ASS1 downregulation is a novel mechanism supporting cancerous proliferation, and they provide a metabolic link between the urea cycle enzymes and pyrimidine synthesis.


Assuntos
Argininossuccinato Sintase/deficiência , Ácido Aspártico/metabolismo , Neoplasias/metabolismo , Pirimidinas/biossíntese , Animais , Argininossuccinato Sintase/metabolismo , Aspartato Carbamoiltransferase/metabolismo , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Citrulinemia/metabolismo , Citosol/metabolismo , Di-Hidro-Orotase/metabolismo , Regulação para Baixo , Ativação Enzimática , Humanos , Masculino , Camundongos , Camundongos SCID , Neoplasias/enzimologia , Neoplasias/patologia , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Fosforilação , Serina-Treonina Quinases TOR/metabolismo
18.
Arch Biochem Biophys ; 569: 32-44, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25668719

RESUMO

l-Ascorbate, commonly known as vitamin C, serves as an antioxidant and cofactor essential for many biological processes. Distinct ascorbate biosynthetic pathways have been established for animals and plants, but little is known about the presence or synthesis of this molecule in invertebrate species. We have investigated ascorbate metabolism in the nematode Caenorhabditis elegans, where this molecule would be expected to play roles in oxidative stress resistance and as cofactor in collagen and neurotransmitter synthesis. Using high-performance liquid chromatography and gas-chromatography mass spectrometry, we determined that ascorbate is present at low amounts in the egg stage, L1 larvae, and mixed animal populations, with the egg stage containing the highest concentrations. Incubating C. elegans with precursor molecules necessary for ascorbate synthesis in plants and animals did not significantly alter ascorbate levels. Furthermore, bioinformatic analyses did not support the presence in C. elegans of either the plant or the animal biosynthetic pathway. However, we observed the complete (13)C-labeling of ascorbate when C. elegans was grown with (13)C-labeled Escherichia coli as a food source. These results support the hypothesis that ascorbate biosynthesis in invertebrates may proceed by a novel pathway and lay the foundation for a broader understanding of its biological role.


Assuntos
Ácido Ascórbico/biossíntese , Caenorhabditis elegans/metabolismo , Animais , Antioxidantes/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Isótopos de Carbono , Cromatografia Líquida de Alta Pressão , Etanol/toxicidade , Cromatografia Gasosa-Espectrometria de Massas , Genes de Helmintos , Redes e Vias Metabólicas , Estresse Oxidativo/efeitos dos fármacos , Paraquat/toxicidade
19.
Plant Cell ; 24(10): 3921-48, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23043051

RESUMO

We surveyed the iron nutrition-responsive transcriptome of Chlamydomonas reinhardtii using RNA-Seq methodology. Presumed primary targets were identified in comparisons between visually asymptomatic iron-deficient versus iron-replete cells. This includes the known components of high-affinity iron uptake as well as candidates for distributive iron transport in C. reinhardtii. Comparison of growth-inhibited iron-limited versus iron-replete cells revealed changes in the expression of genes in chloroplastic oxidative stress response pathways, among hundreds of other genes. The output from the transcriptome was validated at multiple levels: by quantitative RT-PCR for assessing the data analysis pipeline, by quantitative proteomics for assessing the impact of changes in RNA abundance on the proteome, and by cross-species comparison for identifying conserved or universal response pathways. In addition, we assessed the functional importance of three target genes, Vitamin C 2 (VTC2), monodehydroascorbate reductase 1 (MDAR1), and conserved in the green lineage and diatoms 27 (CGLD27), by biochemistry or reverse genetics. VTC2 and MDAR1, which are key enzymes in de novo ascorbate synthesis and ascorbate recycling, respectively, are likely responsible for the 10-fold increase in ascorbate content of iron-limited cells. CGLD27/At5g67370 is a highly conserved, presumed chloroplast-localized pioneer protein and is important for growth of Arabidopsis thaliana in low iron.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Ferro/metabolismo , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Transporte Biológico , Chlamydomonas reinhardtii/classificação , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/fisiologia , FMN Redutase/genética , FMN Redutase/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , Estresse Fisiológico , Transcriptoma
20.
J Biol Chem ; 287(17): 14234-45, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22393048

RESUMO

The L-galactose (Smirnoff-Wheeler) pathway represents the major route to L-ascorbic acid (vitamin C) biosynthesis in higher plants. Arabidopsis thaliana VTC2 and its paralogue VTC5 function as GDP-L-galactose phosphorylases converting GDP-L-galactose to L-galactose-1-P, thus catalyzing the first committed step in the biosynthesis of L-ascorbate. Here we report that the L-galactose pathway of ascorbate biosynthesis described in higher plants is conserved in green algae. The Chlamydomonas reinhardtii genome encodes all the enzymes required for vitamin C biosynthesis via the L-galactose pathway. We have characterized recombinant C. reinhardtii VTC2 as an active GDP-L-galactose phosphorylase. C. reinhardtii cells exposed to oxidative stress show increased VTC2 mRNA and L-ascorbate levels. Genes encoding enzymatic components of the ascorbate-glutathione system (e.g. ascorbate peroxidase, manganese superoxide dismutase, and dehydroascorbate reductase) are also up-regulated in response to increased oxidative stress. These results indicate that C. reinhardtii VTC2, like its plant homologs, is a highly regulated enzyme in ascorbate biosynthesis in green algae and that, together with the ascorbate recycling system, the L-galactose pathway represents the major route for providing protective levels of ascorbate in oxidatively stressed algal cells.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Chlamydomonas reinhardtii/metabolismo , Regulação da Expressão Gênica , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Antioxidantes/metabolismo , Arabidopsis/enzimologia , Ácido Ascórbico/metabolismo , Cloroplastos/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Modelos Biológicos , Dados de Sequência Molecular , Estresse Oxidativo , Filogenia , Proteínas Recombinantes/química , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...