Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 306: 120788, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35817166

RESUMO

AIMS: We determined the ability of the multi-chemokine receptor (CCR2/CCR5/CCR8) antagonist RAP-103 to modulate pain behaviors in an acute model of surgical pain, with and without an added opioid (morphine), and by itself in a chronic model of Streptozotocin (STZ)-induced diabetic peripheral neuropathy (DPN). MATERIALS AND METHODS: Pain behaviors were assessed by mechanical and thermal tests in rats. Cytokine and chemokine biomarkers in sciatic nerve and spinal cord were assessed by in situ qPCR. KEY FINDINGS: In the incisional pain assay, RAP-103 (0.01-1 mg/kg, i.p.) alone had no antiallodynic effect post-surgery. RAP-103 (0.5 mg/kg) when co-administered with morphine (0.5-5 mg/kg), reduced the ED50 of morphine from 3.19 mg/kg to 1.42 mg/kg. In a DPN model, rats exhibited persistent mechanical and cold allodynia. Oral administration of RAP-103 (0.5-0.02 mg/kg/day) resulted in a complete reversal of established hypersensitivity in DPN rats (P < .001), which gradually returned to pain hypersensitivity after the cessation of the treatment. The mRNA expression of cytokines, IL-1ß, TNFα; chemokines CCL2, CCL3; and chemokine receptors CCR2 and CCR5 in DPN rat sciatic nerve, but not spinal cord, were significantly increased. RAP-103 resulted in significant reductions in sciatic nerve expression of IL-1ß, TNFα and CCL3 in STZ-induced diabetic rats with trends toward lower levels for CCL2 and CCR5, while CCR2 was unchanged. SIGNIFICANCE: In acute pain, co-administration of RAP-103 with morphine provided the same antinociceptive effect with a reduced dose of morphine, reducing opioid side-effects and risks. RAP-103 by itself is an effective non-opioid antinociceptive treatment for diabetic neuropathic pain.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Neuralgia , Animais , Ratos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Hiperalgesia/metabolismo , Morfina/farmacologia , Morfina/uso terapêutico , Neuralgia/metabolismo , Peptídeos/uso terapêutico , Receptores de Quimiocinas , Fator de Necrose Tumoral alfa
2.
Life Sci ; 285: 120014, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34619167

RESUMO

AIMS: We have shown that chemokines injected into the periaqueductal gray region of the brain blocks opioid-induced analgesia in the rat cold-water tail flick test (CWTF). The present experiments tested whether chemokine receptor antagonists (CRAs), in combination with sub-analgesic doses of morphine, would provide maximal analgesia in the CWTF test and the mouse formalin pain assay. The effect of CRAs on respiratory depression was also evaluated. MAIN METHODS: One, two or four CRAs (AMD3100/CXCR4, maraviroc/CCR5, RS504393/CCR2 orAZD8797/CX3CR1) were used in combination with sub-analgesic doses of morphine, all given systemically. Pain was assessed using the rat CWTF test or formalin injection into the paw of mice scored by licking. Respiration and oxygen saturation were measured in rats using a MouseOX® Plus - pulse oximeter. KEY FINDINGS: In the CWTF test, a sub-maximal dose of morphine in combination with maraviroc alone, maraviroc plus AMD3100, or with the four chemokine receptor antagonists, produced synergistic increases in antinociception. In the formalin test, the combination of four CRAs plus a sub-maximal dose of morphine resulted in increased antinociception in both male and female mice. AMD3100 had an additive effect with morphine in both sexes. Coadministration of CRAs with morphine did not potentiate the opioid respiratory depressive effect. SIGNIFICANCE: These results support the conclusion that combinations of CRAs can increase the potency of sub-analgesic doses of morphine analgesia without increasing respiratory depression. The results support an "opioid sparing" strategy for alleviation of pain using reduced doses of opioids in combination with CRAs to achieve maximal analgesia.


Assuntos
Analgesia/métodos , Analgésicos Opioides/farmacologia , Morfina/farmacologia , Nociceptividade/efeitos dos fármacos , Dor Nociceptiva/tratamento farmacológico , Receptores de Quimiocinas/antagonistas & inibidores , Animais , Benzilaminas/administração & dosagem , Benzilaminas/farmacologia , Ciclamos/administração & dosagem , Ciclamos/farmacologia , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Feminino , Masculino , Maraviroc/administração & dosagem , Maraviroc/farmacologia , Morfina/administração & dosagem , Morfina/efeitos adversos , Dor Nociceptiva/fisiopatologia , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Insuficiência Respiratória/induzido quimicamente , Tiazóis/administração & dosagem , Tiazóis/farmacologia
3.
Front Pharmacol ; 12: 804950, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185546

RESUMO

Previous work from our laboratory showed that a CB2 selective agonist, O-1966, blocked the proliferative response of C57BL/6 mouse spleen cells exposed to spleen cells of C3HeB/FeJ mice in vitro in the mixed lymphocyte reaction (MLR). The MLR is widely accepted as an in vitro correlate of in vivo grant rejection. Mechanisms of the immunosuppression induced by the cannabinoid were explored, and it was shown that O-1966 in this in vitro assay induced CD25+Foxp3+ Treg cells and IL-10, as well as down-regulated mRNA for CD40 and the nuclear form of the transcription factors NF-κB and NFAT in T-cells. The current studies tested the efficacy of O-1966 in prolonging skin grafts in vivo. Full thickness flank skin patches (1-cm2) from C3HeB/FeJ mice were grafted by suturing onto the back of C57BL/6 mice. O-1966 or vehicle was injected intraperitoneally into treated or control groups of animals beginning 1 h pre-op, and then every other day until 14 days post-op. Graft survival was scored based on necrosis and rejection. Treatment with 5 mg/kg of O-1966 prolonged mean graft survival time from 9 to 11 days. Spleens harvested from O-1966 treated mice were significantly smaller than those of vehicle control animals based on weight. Flow cytometry analysis of CD4+ spleen cells showed that O-1966 treated animals had almost a 3-fold increase in CD25+Foxp3+ Treg cells compared to controls. When dissociated spleen cells were placed in culture ex vivo and stimulated with C3HeB/FeJ cells in an MLR, the cells from the O-1966 treated mice were significantly suppressed in their proliferative response to the allogeneic cells. These results support CB2 selective agonists as a new class of compounds to prolong graft survival in transplant patients.

4.
Molecules ; 25(11)2020 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-32517185

RESUMO

(-)-N-Phenethyl analogs of optically pure N-norhydromorphone were synthesized and pharmacologically evaluated in several in vitro assays (opioid receptor binding, stimulation of [35S]GTPγS binding, forskolin-induced cAMP accumulation assay, and MOR-mediated ß-arrestin recruitment assays). "Body" and "tail" interactions with opioid receptors (a subset of Portoghese's message-address theory) were used for molecular modeling and simulations, where the "address" can be considered the "body" of the hydromorphone molecule and the "message" delivered by the substituent (tail) on the aromatic ring of the N-phenethyl moiety. One compound, N-p-chloro-phenethynorhydromorphone ((7aR,12bS)-3-(4-chlorophenethyl)-9-hydroxy-2,3,4,4a,5,6-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7(7aH)-one, 2i), was found to have nanomolar binding affinity at MOR and DOR. It was a potent partial agonist at MOR and a full potent agonist at DOR with a δ/µ potency ratio of 1.2 in the ([35S]GTPγS) assay. Bifunctional opioids that interact with MOR and DOR, the latter as agonists or antagonists, have been reported to have fewer side-effects than MOR agonists. The p-chlorophenethyl compound 2i was evaluated for its effect on respiration in both mice and squirrel monkeys. Compound 2i did not depress respiration (using normal air) in mice or squirrel monkeys. However, under conditions of hypercapnia (using air mixed with 5% CO2), respiration was depressed in squirrel monkeys.


Assuntos
Hidromorfona/análogos & derivados , Hipercapnia/tratamento farmacológico , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas , Animais , Ligação Competitiva , Hidromorfona/química , Hidromorfona/farmacologia , Hipercapnia/patologia , Camundongos , Modelos Moleculares , Ligação Proteica , Receptores Opioides delta/antagonistas & inibidores , Receptores Opioides delta/metabolismo , Receptores Opioides mu/antagonistas & inibidores , Receptores Opioides mu/metabolismo , Respiração Artificial , Saimiri , Relação Estrutura-Atividade
5.
Mil Med ; 185(Suppl 1): 130-135, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-32074321

RESUMO

INTRODUCTION: Although opioids are widely prescribed for pain, in many circumstances, they have only modest efficacy. Preclinical studies have shown that chemokines, immune mediators released during tissue injury and inflammation, can desensitize opioid receptors and block opioid analgesia by a process termed "heterologous desensitization." The present studies tested the hypothesis that in evoked pain, certain chemokine receptor antagonists (CRAs), given with a submaximal dose of morphine, would result in enhanced morphine potency. METHODS: Three rodent pain assays were used: incisional pain in rats, the cold-water tail flick test in rats, and the formalin test in mice. The FDA-approved, commercially available CRAs, maraviroc and AMD3100, were used. They block the chemokine receptors and ligands, CCR5/CCL5 (RANTES) and CXCR4/CXCL4 (SDF-1α), respectively. RESULTS: In the incisional pain assay, it was found that the combination of a single CRA, or of both CRAs, with morphine significantly shifted the morphine dose-response curve to the left, as much as 3.3-fold. In the cold-water tail flick and formalin tests, significant increases of the antinociceptive effects of morphine were also observed when combined with CRAs. CONCLUSIONS: These results support the potential of a new "opioid-sparing" approach for pain treatment, which combines CRAs with reduced doses of morphine.


Assuntos
Relação Dose-Resposta a Droga , Combinação de Medicamentos , Morfina/uso terapêutico , Receptores de Quimiocinas/antagonistas & inibidores , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Análise de Variância , Animais , Benzilaminas , Ciclamos , Modelos Animais de Doenças , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/uso terapêutico , Maraviroc/farmacologia , Maraviroc/uso terapêutico , Morfina/farmacologia , Manejo da Dor/métodos , Manejo da Dor/normas , Manejo da Dor/estatística & dados numéricos , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley , Ferida Cirúrgica/complicações , Ferida Cirúrgica/tratamento farmacológico
6.
Br J Pharmacol ; 176(17): 3378-3389, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31218677

RESUMO

BACKGROUND AND PURPOSE: Much of the opioid epidemic arose from abuse of prescription opioid drugs. This study sought to determine if the combination of a cannabinoid with an opioid could produce additive or synergistic effects on pain, allowing reduction in the opioid dose needed for maximal analgesia. EXPERIMENTAL APPROACH: Pain was assayed using the formalin test in mice and the carrageenan assay in rats. Morphine and two synthetic cannabinoids were tested: WIN55,212-2 (WIN), which binds to both CB1 and CB2 receptors, and possibly TRPV1 channels; and GP1a, which has activity at CB2 receptors and is reported to inhibit fatty acid amide hydrolase, thus raising levels of endogenous cannabinoids. KEY RESULTS: Morphine in combination with WIN in the formalin test gave synergistic analgesia. Studies with selective antagonists showed that WIN was acting through CB1 receptors. Morphine in combination with GP1a in the formalin test was sub-additive. In the carrageenan test, WIN had no added effect when combined with morphine, but GP1a with morphine showed enhanced analgesia. Both WIN and Gp1a used alone had analgesic activity in the formalin pain test, but not in the carrageenan pain test. CONCLUSIONS AND IMPLICATIONS: The ability of a cannabinoid to produce an additive or synergistic effect on analgesia when combined with morphine varies with the pain assay and may be mediated by CB1 or CB2 receptors. These results hold the promise of using cannabinoids to reduce the dose of opioids for analgesia in certain pain conditions.


Assuntos
Analgésicos Opioides/farmacologia , Canabinoides/farmacologia , Morfina/farmacologia , Dor/tratamento farmacológico , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Animais , Carragenina , Relação Dose-Resposta a Droga , Formaldeído , Masculino , Camundongos , Dor/induzido quimicamente , Dor/metabolismo , Manejo da Dor , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
8.
J Pharmacol Exp Ther ; 367(3): 433-441, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30249618

RESUMO

Crossdesensitization between opioid and chemokine receptors and involvement of chemokines in pain modulation are well established. We investigated if coadministration of chemokine receptor antagonists (CRAs) with morphine would enhance the analgesic potency of morphine on incisional pain in rats. Animals underwent incisional surgery on the left hind paw and pain responses were evaluated using von Frey filaments at various time points postsurgery between 15 and 360 minutes and daily between 24 and 72 hours. Dose-response curves for morphine, maraviroc (a CCR5 antagonist), and AMD3100 (a CXCR4 antagonist) alone were established. While morphine significantly reduced pain in a time- and dose-dependent manner, maraviroc and AMD3100 had no effect by themselves. Coadministration of either maraviroc or AMD3100 with morphine significantly increased morphine's analgesic effect on incisional pain, shifting the dose-response curve to the left 2.3- and 1.8-fold, respectively. Coadministration of both CRAs with morphine significantly shifted further the morphine dose-response curve to the left 3.3-fold. The effect of treatments on mRNA levels in the draining popliteal lymph node for a panel of chemokines and cytokines showed that message for many of these mediators was upregulated by the incision, and the combination of morphine with the CRAs markedly downregulated them. The data show that combining morphine with CRAs potentiates morphine's analgesic effect on incisional pain. Thus, the same analgesic effect of morphine alone can be achieved with lower doses of morphine when combined with CRAs. Using morphine in lower doses could reduce unwanted side effects and possibly block development of tolerance and dependence.


Assuntos
Analgésicos Opioides/farmacologia , Morfina/farmacologia , Dor/tratamento farmacológico , Receptores de Quimiocinas/antagonistas & inibidores , Animais , Regulação para Baixo/efeitos dos fármacos , Tolerância a Medicamentos/fisiologia , Masculino , Dor/metabolismo , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley , Receptores CXCR4/metabolismo
9.
Front Microbiol ; 6: 1230, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26583016

RESUMO

Although opioids have been extensively studied for their impact on the immune system, limited information is available about the specific actions of opioids on intracellular antiviral innate immunity against HIV infection. Thus, we investigated whether heroin, one of the most abused drugs, inhibits the expression of intracellular HIV restriction microRNA (miRNA) and facilitates HIV replication in macrophages. Heroin treatment of macrophages enhanced HIV replication, which was associated with the downregulation of several HIV restriction miRNAs. These heroin-mediated actions on the miRNAs and HIV could be antagonized by naltrexone, an opioid receptor antagonist. Furthermore, the in vitro negative impact of heroin on HIV-associated miRNAs was confirmed by the in vivo observation that heroin addicts had significantly lower levels of macrophage-derived HIV restriction miRNAs than those in the control subjects. These in vitro and in vivo findings indicate that heroin use compromises intracellular anti-HIV innate immunity, providing a favorable microenvironment for HIV survival in the target cells.

10.
J Neuroimmune Pharmacol ; 10(2): 318-32, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25980325

RESUMO

We have previously shown that agonists selective for the cannabinoid receptor 2 (CB2), including O-1966, inhibit the Mixed Lymphocyte Reaction (MLR), an in vitro correlate of organ graft rejection, predominantly through effects on T-cells. Current studies explored the mechanism of this immunosuppression by O-1966 using mouse spleen cells. Treatment with O-1966 dose-relatedly decreased levels of the active nuclear forms of the transcription factors NF-κB and NFAT in wild-type T-cells, but not T-cells from CB2 knockout (CB2R k/o) mice. Additionally, a gene expression profile of purified T-cells from MLR cultures generated using a PCR T-cell activation array showed that O-1966 decreased mRNA expression of CD40 ligand and CyclinD3, and increased mRNA expression of Src-like-adaptor 2 (SLA2), Suppressor of Cytokine Signaling 5 (SOCS5), and IL-10. The increase in IL-10 was confirmed by measuring IL-10 protein levels in MLR culture supernatants. Further, an increase in the percentage of regulatory T-cells (Tregs) was observed in MLR cultures. Pretreatment with anti-IL-10 resulted in a partial reversal of the inhibition of proliferation and blocked the increase of Tregs. Additionally, O-1966 treatment caused a dose-related decrease in the expression of CD4 in MLR cultures from wild-type, but not CB2R k/o, mice. These data support the potential of CB2-selective agonists as useful therapeutic agents to prolong graft survival in transplant patients, and strengthens their potential as a new class of immunosuppressive agents with broader applicability.


Assuntos
Anisóis/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Interleucina-10/biossíntese , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Técnicas de Cocultura , Cicloexanóis , Relação Dose-Resposta a Droga , Feminino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos
11.
J Neuroimmune Pharmacol ; 8(5): 1239-50, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23824763

RESUMO

Cannabinoids are known to have anti-inflammatory and immunomodulatory properties. Cannabinoid receptor 2 (CB2) is expressed mainly on leukocytes and is the receptor implicated in mediating many of the effects of cannabinoids on immune processes. This study tested the capacity of Δ(9)-tetrahydrocannabinol (Δ(9)-THC) and of two CB2-selective agonists to inhibit the murine Mixed Lymphocyte Reaction (MLR), an in vitro correlate of graft rejection following skin and organ transplantation. Both CB2-selective agonists and Δ(9)-THC significantly suppressed the MLR in a dose dependent fashion. The inhibition was via CB2, as suppression could be blocked by pretreatment with a CB2-selective antagonist, but not by a CB1 antagonist, and none of the compounds suppressed the MLR when splenocytes from CB2 deficient mice were used. The CB2 agonists were shown to act directly on T-cells, as exposure of CD3(+) cells to these compounds completely inhibited their action in a reconstituted MLR. Further, the CB2-selective agonists completely inhibited proliferation of purified T-cells activated by anti-CD3 and anti-CD28 antibodies. T-cell function was decreased by the CB2 agonists, as an ELISA of MLR culture supernatants revealed IL-2 release was significantly decreased in the cannabinoid treated cells. Together, these data support the potential of this class of compounds as useful therapies to prolong graft survival in transplant patients.


Assuntos
Canabinoides/farmacologia , Rejeição de Enxerto/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Receptor CB2 de Canabinoide/metabolismo , Linfócitos T/efeitos dos fármacos , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Marcação In Situ das Extremidades Cortadas , Ativação Linfocitária/imunologia , Teste de Cultura Mista de Linfócitos , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , RNA Mensageiro/análise , Linfócitos T/imunologia
12.
Drug Alcohol Depend ; 123(1-3): 277-81, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22196236

RESUMO

BACKGROUND: Buprenorphine is an opioid receptor ligand whose mechanism of action is incompletely understood. METHODS: Using Ca(2+) imaging, we assessed the effects of buprenorphine, ß-endorphin, and morphine on cytosolic Ca(2+) concentration [Ca(2+)](i), in rat striatal neurons. RESULTS: Buprenorphine (0.01-1 µM) increased [Ca(2+)](i) in a dose-dependent manner in a subpopulation of rat striatal neurons. The effect of buprenorphine was largely reduced by naloxone, a non-selective opioid receptor antagonist, but not by µ, κ, δ or NOP-selective antagonists. ß-Endorphin (0.1 µM) increased [Ca(2+)](i) with a lower amplitude and slower time course than buprenorphine. Similar to buprenorphine, the effect of ß-endorphin was markedly decreased by naloxone, but not by opioid-selective antagonists. Morphine (0.1-10 µM), did not affect [Ca(2+)](i) in striatal neurons. CONCLUSIONS: Our results suggest that buprenorphine and ß-endorphin act on a distinct type/subtype of plasmalemmal opioid receptors or activate intracellular opioid-like receptor(s) in rat striatal neurons.


Assuntos
Buprenorfina/farmacologia , Cálcio/metabolismo , Corpo Estriado/metabolismo , Citosol/metabolismo , Entorpecentes/farmacologia , Neurônios/metabolismo , Receptores Opioides/agonistas , Animais , Corpo Estriado/citologia , Corpo Estriado/efeitos dos fármacos , Citosol/efeitos dos fármacos , Corantes Fluorescentes , Fura-2 , Ligantes , Morfina/farmacologia , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , beta-Endorfina/farmacologia
13.
J Neuroimmune Pharmacol ; 6(4): 551-65, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21826405

RESUMO

Acinetobacter baumannii is an important nosocomial pathogen in civilian intensive care units. Recently the incidence has increased in wounded military personnel. Morphine is documented in numerous animal studies to be immunosuppressive and to sensitize to infection. The hypotheses were tested that morphine, administered for analgesia in the battlefield, predisposes to Acinetobacter infection, and that the opioid may have an additive or synergistic effect with trauma. To test these hypotheses, an intraperitoneal infection model was established in mice using several Acinetobacter strains. Morphine administered for 48 h by implantation of a slow-release morphine pellet increased mortality compared to animals receiving a placebo pellet, an effect that was blocked by the mu-opioid receptor antagonist, naltrexone. Acinetobacter burdens in the blood, spleens, livers, and lungs of morphine-treated mice, were significantly higher than those in placebo-treated animals, confirming that mortality was due to potentiated growth of the bacteria. There were also elevated levels of pro-inflammatory cytokines in morphine-treated versus placebo-treated mice. Morphine caused a reduction in the total number of cells in the peritoneal cavity, a decrease in the percentage and total numbers of neutrophils, and a decrease in the total number of macrophages. Morphine treatment also suppressed levels of the neutrophil-inducing molecules, IL-17A and KC/CXCL1. However, IL-17A(-/-) mice given morphine were not sensitized to Acintobacter infection to a greater degree than similarly treated wild-type mice. Trauma alone did not sensitize to Acinetobacter infection, and there was no additive effect between morphine and trauma. These results support the hypothesis that morphine potentiates Acinetobacter infection.


Assuntos
Infecções por Acinetobacter/imunologia , Analgésicos Opioides/efeitos adversos , Morfina/efeitos adversos , Ferimentos e Lesões/imunologia , Acinetobacter baumannii/efeitos dos fármacos , Animais , Separação Celular , Citocinas/biossíntese , Citocinas/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Imunossupressores/efeitos adversos , Interleucina-17/genética , Interleucina-17/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfina/imunologia , Sepse/imunologia , Sepse/microbiologia
14.
Drug Alcohol Depend ; 118(2-3): 497-9, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21600706

RESUMO

BACKGROUND: We showed recently that elevated brain levels of the chemokine stromal cell-derived growth factor-1α (SDF-1α/CXCL12, a ligand for the human immunodeficiency virus [HIV] co-receptor CXCR4) diminish the antinociceptive effect of morphine, but failed to influence buprenorphine-induced antinociception. AIMS: Because the HIV-1 coat protein, glycoprotein 120 (gp120) T-tropic strain, binds to the same receptor as SDF-1α/CXCL12, the present experiments were designed to investigate the consequence of administering gp120 to rat brain on buprenorphine-induced antinociception in the 54°C hot plate test. For comparative purposes, the effect of gp120 on an equi-antinociceptive dose of methadone was also examined. METHODS: A sterilized stainless-steel C313G guide cannula was implanted into the periaqueductal grey (PAG), a brain region critical for the processing of pain signals, and a primary site of action of many analgesics. Rats were pretreated with gp120, administered into the PAG. RESULTS: The subsequent antinociception associated with methadone was diminished whereas buprenorphine-induced antinociception was unaffected. Buprenorphine thus appears to be a more effective analgesic than methadone in the presence of gp120 in the brain, a condition that is associated with HIV-related pain and infection.


Assuntos
Analgésicos Opioides/uso terapêutico , Buprenorfina/uso terapêutico , Proteína gp120 do Envelope de HIV/farmacologia , Metadona/uso terapêutico , Dor/tratamento farmacológico , Analgesia , Animais , Proteína gp120 do Envelope de HIV/metabolismo , Temperatura Alta , Masculino , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Substância Cinzenta Periaquedutal/metabolismo , Ratos , Ratos Sprague-Dawley
15.
Brain Behav Immun ; 25(7): 1434-43, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21569838

RESUMO

Recently, we have shown that morphine's analgesic activity can be attenuated by chemokines, specifically CCL5 and CXCL12. Because the HIV-1 coat protein, glycoprotein 120 (gp120), binds to the same receptors as do CCL5 and CXCL12, experiments were designed to investigate the effect of gp120 in the brain on antinociception induced by morphine in the cold-water (-3°C) tail-flick (CWT) and hot-plate (+54°C) tests. In addition, mu-opioid-receptor-mediated effects in brain periaqueductal grey (PAG) slices were examined with whole-cell patch-clamp recordings. The results showed that (1) pretreatment with gp120 itself (10, 25, 50, 100 or 133 ng, PAG) had no nociceptive effect in the CWT; (2) pretreatment with gp120 (25 or 100 ng) dose-dependently reduced antinociception induced by subcutaneous (sc) injection of morphine (3 or 6 mg/kg) or PAG injection of morphine (100 ng) in the CWT; (3) a PAG injection of gp120 (133 ng), given 30 min before sc injection of morphine (6 mg/kg), similarly reduced morphine antinociception in the hot-plate test; (4) the inhibitory effect of gp120 on morphine-induced antinociception in the CWT was reversed by AMD3100, an antagonist of CXCR4; (5) pretreatment of slices with gp120 (200 pM) prevented morphine (10 µM)-induced hyperpolarization and reduction of input resistance in PAG neurons. Electrophysiology studies paralleled gp120-induced desensitization of a mu-opioid-receptor-mediated response in PAG neurons at the single-cell level. These studies are the first to demonstrate that the analgesic activity of morphine can be reduced by the presence of gp120 in the PAG and that pretreatment with AMD3100 is able to restore the analgesic effects of morphine.


Assuntos
Analgésicos Opioides/farmacologia , Proteína gp120 do Envelope de HIV/farmacologia , Morfina/farmacologia , Medição da Dor/efeitos dos fármacos , Percepção da Dor/efeitos dos fármacos , Analgesia , Animais , Comportamento Animal/efeitos dos fármacos , Benzilaminas , Temperatura Baixa , Ciclamos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Compostos Heterocíclicos/farmacologia , Temperatura Alta , Masculino , Potenciais da Membrana/efeitos dos fármacos , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Substância Cinzenta Periaquedutal/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores CXCR4/antagonistas & inibidores , Receptores Opioides mu/metabolismo
16.
Drug Alcohol Depend ; 114(2-3): 246-8, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21112161

RESUMO

Although morphine is often the best option for treating acute and chronic severe pain, its analgesic activity can be blocked in situations in which there are elevated levels of chemokines. Indeed, recently we have shown that elevated brain levels of the chemokine stromal cell-derived growth factor-1alpha (SDF-1α/CXCL12, the ligand of the HIV co-receptor CXCR4) diminish the antinociceptive effect of morphine. The purpose of the present study was to investigate whether such an effect is restricted to morphine or extends to other opioid medications such as buprenorphine. A sterilized stainless-steel C313G guide cannula was implanted into the periaqueductal grey (PAG), a brain region critical to the processing of pain signals, and a primary site of action of many analgesic compounds. The cold-water (-3°C) tail-flick test (CWT) was used to measure antinociception. Rats were pretreated with SDF-1α/CXCL12 administered into the PAG, and the antinociceptive actions of buprenorphine were measured. Direct infusion of SDF-1α/CXCL12 into the PAG failed to alter the antinociceptive action of buprenorphine. The presence of SDF-1α/CXCL12 in the PAG differentially alters the antinociceptive function of opioid medications. While it was able to diminish the antinociception induced by morphine (Adler et al., 2006), SDF-1α/CXCL12 did not affect the buprenorphine-induced antinociception. Buprenorphine appears to be more effective in the presence of high levels of SDF-1α/CXCL12 in the brain (which frequently occurs during neuroinflammatory conditions).


Assuntos
Analgésicos Opioides/farmacologia , Química Encefálica/efeitos dos fármacos , Buprenorfina/farmacologia , Quimiocina CXCL12/metabolismo , Medição da Dor/efeitos dos fármacos , Animais , Química Encefálica/genética , Quimiocina CXCL12/biossíntese , Quimiocina CXCL12/genética , Masculino , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
17.
Mol Pharmacol ; 78(4): 560-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20826425

RESUMO

Known agonists of the orphan receptor GPR35 are kynurenic acid, zaprinast, 5-nitro-2-(3-phenylproplyamino) benzoic acid, and lysophosphatidic acids. Their relatively low affinities for GPR35 and prominent off-target effects at other pathways, however, diminish their utility for understanding GPR35 signaling and for identifying potential therapeutic uses of GPR35. In a screen of the Prestwick Library of drugs and drug-like compounds, we have found that pamoic acid is a potent GPR35 agonist. Pamoic acid is considered by the Food and Drug Administration as an inactive compound that enables long-acting formulations of numerous drugs, such as the antihelminthics oxantel pamoate and pyrantel pamoate; the psychoactive compounds hydroxyzine pamoate (Vistaril) and imipramine pamoate (Tofranil-PM); and the peptide hormones triptorelin pamoate (Trelstar) and octreotide pamoate (OncoLar). We have found that pamoic acid induces a G(i/o)-linked, GPR35-mediated increase in the phosphorylation of extracellular signal-regulated kinase 1/2, recruitment of ß-arrestin2 to GPR35, and internalization of GPR35. In mice, it attenuates visceral pain perception, indicating an antinociceptive effect, possibly through GPR35 receptors. We have also identified in collaboration with the Sanford-Burnham Institute Molecular Libraries Probe Production Center new classes of GPR35 antagonist compounds, including the nanomolar potency antagonist methyl-5-[(tert-butylcarbamothioylhydrazinylidene)methyl]-1-(2,4-difluorophenyl)pyrazole-4-carboxylate (CID2745687). Pamoic acid and potent antagonists such as CID2745687 present novel opportunities for expanding the chemical space of GPR35, elucidating GPR35 pharmacology, and stimulating GPR35-associated drug development. Our results indicate that the unexpected biological functions of pamoic acid may yield potential new uses for a common drug constituent.


Assuntos
Analgésicos/administração & dosagem , Arrestinas/metabolismo , Sistemas de Liberação de Medicamentos/métodos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Naftóis/administração & dosagem , Receptores Acoplados a Proteínas G/metabolismo , Animais , Arrestinas/agonistas , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Humanos , Masculino , Camundongos , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Receptores Acoplados a Proteínas G/agonistas , Renilla , beta-Arrestinas
18.
Microb Pathog ; 49(6): 330-5, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20688146

RESUMO

Previous studies from our laboratory demonstrated that mice treated with morphine pellets are sensitized to Salmonella enterica, serovar Typhimurium infection. However, the opioid receptor antagonist, naltrexone, only partially blocked the effect of morphine, raising the possibility that the opioid might have some of its effects through a nonopioid receptor. To further clarify whether sensitization to infection is an opioid receptor-dependent phenomenon, µ-opioid receptor knockout (MORKO) mice were used in the present study. Wild-type (WT) and MORKO mice were treated with morphine and their sensitivity to oral Salmonella infection was assessed by mortality, bacterial burdens in gut associated lymphoid tissue and in blood and peritoneal fluid, and by levels of pro-inflammatory cytokines in plasma. MORKO animals treated with morphine were refractory to a sublethal dose of Salmonella, while similar treatment of WT animals resulted in 100% mortality. WT animals treated with morphine had high bacterial loads in all organs tested, while morphine-treated MORKO animals had no culturable Salmonella in any organs. Pro-inflammatory cytokine levels were elevated in morphine-treated WT but not MORKO mice infected with Salmonella. These results provide definitive evidence that the morphine-mediated enhancement of oral Salmonella infection is dependent on the µ-opioid receptor.


Assuntos
Suscetibilidade a Doenças/induzido quimicamente , Morfina/toxicidade , Receptores Opioides mu/efeitos dos fármacos , Salmonelose Animal/microbiologia , Salmonella typhimurium/patogenicidade , Animais , Líquido Ascítico/microbiologia , Carga Bacteriana , Sangue/microbiologia , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Tecido Linfoide/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Opioides mu/deficiência , Análise de Sobrevida
19.
J Neuroimmune Pharmacol ; 5(1): 143-54, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20119853

RESUMO

Nociceptin/orphanin FQ (N/OFQ), added in vitro to murine spleen cells in the picomolar range, suppressed antibody formation to sheep red blood cells in a primary and a secondary plaque-forming cell assay. The activity of the peptide was maximal at 10(-12) M, with an asymmetric U-shaped dose-response curve that extended activity to 10(-14) M. Suppression was not blocked by pretreatment with naloxone. Specificity of the suppressive response was shown using affinity-purified rabbit antibodies against two N/OFQ peptides and with a pharmacological antagonist. Antisera against both peptides were active, in a dose-related manner, in neutralizing N/OFQ-mediated immunosuppression, when the peptide was used at concentrations from 10(-12.3) to 10(-11.6) M. In addition, nociceptin given in vivo by osmotic pump for 48 h suppressed the capacity of spleen cells placed ex vivo to make an anti-sheep red blood cell response. These studies show that nociceptin directly inhibits an adaptive immune response, i.e., antibody formation, both in vitro and in vivo.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Imunossupressores/farmacologia , Peptídeos Opioides/farmacologia , Imunidade Adaptativa/imunologia , Animais , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Eritrócitos/imunologia , Feminino , Soros Imunes/farmacologia , Imunossupressores/administração & dosagem , Imunossupressores/antagonistas & inibidores , Técnicas In Vitro , Infusões Subcutâneas , Camundongos , Camundongos Endogâmicos C3H , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Peptídeos Opioides/administração & dosagem , Peptídeos Opioides/antagonistas & inibidores , Baço/efeitos dos fármacos , Baço/imunologia , Nociceptina
20.
J Pharmacol Exp Ther ; 332(2): 549-53, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19906780

RESUMO

Wasting syndrome is a common complication of HIV infection and is marked by progressive weight loss and weakness, often associated with fever. The mechanisms involved in the pathogenesis of these syndromes are not well defined, and neither are the brain areas involved. The present study tests a new hypothesis: that the preoptic anterior hypothalamus (POAH), the main brain area for thermoregulation and fever, has a role in the pathogenesis of fever induced by glycoprotein 120 (gp120), the surface envelope protein used by the HIV to gain access into immune cells, and that the CXC chemokine receptors (CXCR4) that serve as a coreceptor for HIV entry mediate the effect. A sterilized stainless steel C313G cannula guide was implanted into the POAH, and a biotelemetry system was used to monitor the body temperature (Tb) changes. The administration of gp120 into the POAH induced fever in a dose-dependent manner. To demonstrate possible links between the gp120 and CXCR4 in generating the fever, we pretreated the rats with 1,1'-[1,4-phenylenebis(methylene)]bis[1,4,8,11-tetraazacyclotetradecane] octohydrobromide dihydrate (AMD 3100), an antagonist of stromal cell-derived growth factor (SDF)-1alpha/CXCL12, acting at its receptor, CXCR4, 30 min before administration of gp120. AMD 3100 significantly reduced the gp120-induced fever. The present studies show that the presence of HIV-1 envelope glycoprotein gp120 in the POAH provokes fever via interaction CXCR4 pathway.


Assuntos
Febre/etiologia , Proteína gp120 do Envelope de HIV/farmacologia , Área Pré-Óptica/efeitos dos fármacos , Receptores CXCR4/antagonistas & inibidores , Animais , Fármacos Anti-HIV/farmacologia , Benzilaminas , Temperatura Corporal/efeitos dos fármacos , Ciclamos , Febre/induzido quimicamente , Proteína gp120 do Envelope de HIV/administração & dosagem , Compostos Heterocíclicos/farmacologia , Masculino , Microinjeções , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...