Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202401069, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709711

RESUMO

Peptide-oligonucleotide conjugates (POCs) are covalent architectures composed of a DNA or RNA molecules linked to a peptide. These constructs have found widespread applications ranging from hybrid nanomaterials to gene-targeted therapies. Considering the important role of POCs, a new catalytic approach for their preparation is reported here, that could be applied either on solid support in anhydrous media, or post-synthetically in aqueous buffer. Single amino acids, peptides and cell penetrating peptides (CPPs) were conjugated to various oligo(ribo)nucleotides with high conversions and good isolated yields. The applicability of the method was demonstrated on more than 35 examples including an analogue of a commercial therapeutic oligonucleotide. Other conjugation partners, such as deoxycholic acid and biotin were also successfully conjugated to oligonucleotides. To highlight the potential of this catalytic approach, these conditions have been applied to iterative processes, which is of high interest for the development of DNA-Encoded Libraries.

2.
Eur J Med Chem ; 269: 116308, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38503166

RESUMO

Plasmodium multi-resistance, including against artemisinin, seriously threatens malaria treatment and control. Hence, new drugs are urgently needed, ideally targeting different parasitic stages, which are not yet targeted by current drugs. The SUB1 protease is involved in both hepatic and blood stages due to its essential role in the egress of parasites from host cells, and, as potential new target, it would meet the above criteria. We report here the synthesis as well as the biological and structural evaluation of substrate-based α-ketoamide SUB1 pseudopeptidic inhibitors encompassing positions P4-P2'. By individually substituting each position of the reference compound 1 (MAM-117, Ac-Ile-Thr-Ala-AlaCO-Asp-Glu (Oall)-NH2), we better characterized the structural determinants for SUB1 binding. We first identified compound 8 with IC50 values of 50 and 570 nM against Pv- and PfSUB1, respectively (about 3.5-fold higher potency compared to 1). Compound 8 inhibited P. falciparum merozoite egress in culture by 37% at 100 µM. By increasing the overall hydrophobicity of the compounds, we could improve the PfSUB1 inhibition level and antiparasitic activity, as shown with compound 40 (IC50 values of 12 and 10 nM against Pv- and PfSUB1, respectively, IC50 value of 23 µM on P. falciparum merozoite egress). We also found that 8 was highly selective towards SUB1 over three mammalian serine peptidases, supporting the promising value of this compound. Finally, several crystal 3D-structures of SUB1-inhibitor complexes, including with 8, were solved at high resolution to decipher the binding mode of these compounds.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Parasitos , Animais , Subtilisina/metabolismo , Sequência de Aminoácidos , Plasmodium falciparum/metabolismo , Peptídeos , Malária Falciparum/parasitologia , Serina Proteases/metabolismo , Relação Estrutura-Atividade , Antimaláricos/farmacologia , Antimaláricos/química , Proteínas de Protozoários , Mamíferos/metabolismo
3.
RSC Adv ; 11(45): 28085-28091, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35480752

RESUMO

In parallel with increasing Ni production and utilisation, Ni pollution in the soil-water continuum has become an alarming and global problem. Solutions for removing Ni from industrial effluents have been widely investigated and biosorption has emerged as an efficient, cost-effective, scalable and sustainable alternative for water treatment. However, the biosorption capacity is limited by the chemical composition of the biomaterial and the Ni-enriched biomaterials are rarely valorised. In this work, the biosorption capacity of three abundant biomaterials with different chemical properties - water hyacinth, coffee grounds and pinecones - was studied before and after functionalization, and reached a maximum biosorption capacity of 51 mg g-1 of Ni(ii). A bioinspired functionalization approach was investigated introducing carboxylate moieties and was conducted in green conditions. The Ni-enriched biomaterials were valorised by transformation into catalysts, which were characterised by MP-AES and XRPD. Their characterisation revealed a structure similar to nickel formate, and hence the Eco-Ni(HCOO)2 catalysts were tested in Suzuki-Miyaura reactions. Several aryl iodides were successfully cross-coupled to phenylboronic acids using Eco-Ni(HCOO)2 without any ligand, a mild and green base in a mixture of green solvents.

4.
J Am Chem Soc ; 141(46): 18437-18443, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31714077

RESUMO

Functionalization at the α-position of carbonyl compounds has classically relied on enolate chemistry. As a result, the generation of a new C-X bond, where X is more electronegative than carbon requires an oxidation event. Herein we show that, by rendering the α-position of amides electrophilic through a mild and chemoselective umpolung transformation, a broad range of widely available oxygen, nitrogen, sulfur, and halogen nucleophiles can be used to generate α-functionalized amides. More than 60 examples are presented to establish the generality of this process, and calculations of the mechanistic aspects underline a fragmentation pathway that accounts for the broadness of this methodology.

5.
Nat Chem ; 11(4): 329-334, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833720

RESUMO

Given the unique properties of fluorine, and the ability of fluorination to change the properties of organic molecules, there is significant interest from medicinal chemists in innovative methodologies that enable the synthesis of new fluorinated motifs. State-of-the-art syntheses of α-fluorinated carbonyl compounds invariably rely on electrophilic fluorinating agents, which can be strongly oxidizing and difficult to handle. Here we show that reversing the polarity of the enolate partner to that of an enolonium enables nucleophilic fluorinating agents to be used for direct chemoselective α-C-H-fluorination of amides. Reduction of these products enables facile access to ß-fluorinated amines and the value of this methodology is shown by the easy preparation of a number of fluorinated analogues of drugs and agrochemicals. A fluorinated analogue of citalopram, a marketed antidepressant drug, is presented as an example of the preserved biological activity after fluorination.


Assuntos
Aldeídos/química , Flúor/química , Cetonas/química , Amidas/química , Catálise , Citalopram/química , Halogenação , Preparações Farmacêuticas/síntese química , Preparações Farmacêuticas/química , Estereoisomerismo
6.
Angew Chem Int Ed Engl ; 58(2): 447-451, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30332524

RESUMO

We report a method for the selective α,ß-dehydrogenation of amides in the presence of other carbonyl moieties under mild conditions. Our strategy relies on electrophilic activation coupled to in situ selective selenium-mediated dehydrogenation. The α,ß-unsaturated products were obtained in moderate to excellent yields, and their synthetic versatility was demonstrated by a range of transformations. Mechanistic experiments suggest formation of an electrophilic SeIV species.

7.
Angew Chem Int Ed Engl ; 57(40): 13330-13334, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30067301

RESUMO

Phosphonates have garnered considerable attention for years owing to both their singular biological properties and their synthetic potential. State-of-the-art methods for the preparation of mixed phosphonates, phosphonamidates, phosphonothioates, and phosphinates rely on harsh and poorly selective reaction conditions. We report herein a mild method for the modular preparation of phosphonylated derivatives, several of which exhibit interesting biological activities, that is based on chemoselective activation with triflic anhydride. This procedure enables flexible and even iterative substitution with a broad range of O, S, N, and C nucleophiles.


Assuntos
Organofosfonatos/química , Alcinos/química , Aminas/química , Produtos Biológicos/química , Furanos/química , Nitrilas/química , Organofosfonatos/síntese química , Sulfonamidas/química
8.
J Am Chem Soc ; 139(45): 16040-16043, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29099184

RESUMO

A new approach for the synthesis of 1,4-dicarbonyl compounds is reported. Chemoselective activation of amide carbonyl functionality and subsequent umpolung via N-oxide addition generates an electrophilic enolonium species that can be coupled with a wide range of nucleophilic enolates. The method conveys broad functional group tolerance on both components, does not suffer from formation of homocoupling byproducts and avoids the use of transition metal catalysts.

9.
Org Biomol Chem ; 15(2): 387-395, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27918059

RESUMO

Acyclic α-amino vinylphosphonates were alkylated through the Mitsunobu reaction then diolefinic compounds hence formed were subjected to RCM. Studies on the scope and limitations of RCM with these sterically hindered α-amino vinylphosphonates are detailed.

10.
Chem Commun (Camb) ; 51(17): 3612-5, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25634577

RESUMO

α-Amino allenylphosphonates were treated with cerium(iv) ammonium nitrate under various conditions to form spirodienones in good to excellent yields. The 5-endo-dig cyclization proceeds through the formation of a key iminium intermediate. A comprehensive study on the nature of the solvent used for this reaction was undertaken resulting in the formation of three types of spirodienone scaffolds.


Assuntos
Alcadienos/química , Cério/química , Cetonas/síntese química , Nitratos/química , Organofosfonatos/química , Compostos de Espiro/síntese química , Ciclização , Cetonas/química , Estrutura Molecular , Compostos de Espiro/química
11.
Chemphyschem ; 12(3): 580-94, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21337487

RESUMO

We discuss artificial photonic antenna systems that are built by incorporating chromophores into one-dimensional nanochannel materials and by organizing the latter in specific ways. Zeolite L (ZL) is an excellent host for the supramolecular organization of different kinds of molecules and complexes. The range of possibilities for filling its one-dimensional channels with suitable guests has been shown to be much larger than one might expect. Geometrical constraints imposed by the host structure lead to supramolecular organization of the guests in the channels. The arrangement of dyes inside the ZL channels is what we call the first stage of organization. It allows light harvesting within the volume of a dye-loaded ZL crystal and also the radiationless transport of energy to either the channel ends or center. One-dimensional FRET transport can be realized in these guest-host materials. The second stage of organization is realized by coupling either an external acceptor or donor stopcock fluorophore at the ends of the ZL channels, which can then trap or inject electronic excitation energy. The third stage of organization is obtained by interfacing the material to an external device via a stopcock intermediate. A possibility to achieve higher levels of organization is by controlled assembly of the host into ordered structures and preparation of monodirectional materials. The usually strong light scattering of ZL can be suppressed by refractive-index matching and avoidance of microphase separation in hybrid polymer/dye-ZL materials. The concepts are illustrated and discussed in detail on a bidirectional dye antenna system. Experimental results of two materials with a donor-to-acceptor ratio of 33:1 and 52:1, respectively, and a three-dye system illustrate the validity and challenges of this approach for synthesizing dye-nanochannel hybrid materials for light harvesting, transport, and trapping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...