RESUMO
The rising global epidemic of diabetic nephropathy (DN) will likely lead to increase in the prevalence of cardiovascular morbidity and mortality posing a serious burden for public health care. Despite greater understanding of the etiology of diabetes and the development of novel treatment strategies to control blood glucose levels, the prevalence and incidence rate of DN is increasing especially in minority populations including Mexican-Americans. Mexican-Americans with type 2 diabetes (T2DM) are three times more likely to develop microalbuminuria, and four times more likely to develop clinical proteinuria compared to non-Hispanic whites. Furthermore, Mexican-Americans have a sixfold increased risk of developing renal failure secondary to T2DM compared to Caucasians. Prevention and better treatment of DN should be a high priority for both health-care organizations and society at large. Pathogenesis of DN is multi-factorial. Familial clustering of DN-related traits in MAs show that DN and related traits are heritable and that genes play a susceptibility role. While, there has been some progress in identifying genes which when mutated influence an individual's risk, major gene(s) responsible for DN are yet to be identified. Knowledge of the genetic causes of DN is essential for elucidation of its mechanisms, and for adequate classification, prognosis, and treatment. Self-identification and collaboration among researchers with suitable genomic and clinical data for meta-analyses in Mexican-Americans is critical for progress in replicating/identifying DN risk genes in this population. This paper reviews the approaches and recent efforts made to identify genetic variants contributing to risk for DN and related phenotypes in the Mexican-American population.
Assuntos
Nefropatias Diabéticas/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Americanos Mexicanos/genética , Característica Quantitativa Herdável , Nefropatias Diabéticas/fisiopatologia , Ligação Genética , HumanosRESUMO
BACKGROUND AND OBJECTIVES: Diabetic nephropathy (DN) is a multifactorial complication characterized by persistent proteinuria in susceptible individuals with type 1 and type 2 diabetes. Disease burden in people of Mexican-American descent is particularly high, but there are only a few studies that characterize genes for DN in this ethnic group. Two genes, carnosine dipeptidase 1 (CNDP1) and engulfment and cell motility 1 (ELMO1) previously showed association with DN in other ethnic groups. CNDP1 and ELMO1 were examined along with eight other genes that are less well characterized for DN in a new study of Mexican-Americans. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: The target sample was patients of Mexican-American ancestry collected from three centers: 455 patients with DN and 437 controls with long-term diabetes but no incident nephropathy. Forty-two, 227, and 401 single nucleotide polymorphisms (SNPs) in CNDP1, ELMO1, and the other eight genes, respectively, were examined. RESULTS: No region in CNDP1 or ELMO1 showed significant P values. Of the other eight candidate genes, an association of DN with a SNP pair, rs2146098 and rs6659783, was found in hemicentin 1 (HMCN1) (unadjusted P = 6.1 x 10(-5)). Association with a rare haplotype in this region was subsequently identified. CONCLUSIONS: The associations in CNDP1 or ELMO1 were not replicable; however, an association of DN with HMCN1 was found. Additional work at this and other loci will enable refinement of the genetic hypotheses regarding DN in the Mexican-American population to find therapies for this debilitating disease.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Nefropatias Diabéticas/genética , Dipeptidases/genética , Imunoglobulinas/genética , Americanos Mexicanos/genética , Estudos de Casos e Controles , Distribuição de Qui-Quadrado , Nefropatias Diabéticas/etnologia , Estudos de Associação Genética , Predisposição Genética para Doença , Haplótipos , Humanos , Modelos Logísticos , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Medição de Risco , Fatores de Risco , Estados Unidos/epidemiologiaRESUMO
Diabetic nephropathy is a classic complex trait, whose development in a given individual reflects contributions from multiple genes and whose expression is modulated by environmental factors. Numerous genetic strategies have been used to identify common disease risk loci and genes, including candidate gene analyses, linkage analysis, transmission disequilibrium testing (a family based association test to identify linkage between a genetic marker and a biological trait or disease), and admixture mapping (also referred to as mapping by admixture linkage disequilibrium). Choosing the best genetic strategy to identify susceptibility genes in a disease is dependent on knowing whether the disorder is monogenic (the result of one gene), oligogenic (the result of a few genes), or polygenic (the result of many genes). The likelihood of finding risk loci for a disease with a putative genetic contribution is in part owing to the disease recurrence risk ratio (the risk of expressing the disease phenotype in siblings of the proband divided by the risk observed in the general population), the genotypic risk ratio (the risk of expressing the phenotype if the gene is present divided by the risk if the gene is not present), the number of susceptibility genes, how the susceptibility genes interact, how much of the disease risk is contributed by environmental factors, and the disease penetrance (the likelihood that the phenotype will be expressed if the gene is present).
Assuntos
Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/genética , Mapeamento Cromossômico , Ligação Genética , Loci Gênicos , Humanos , Americanos MexicanosRESUMO
For admixture mapping studies in Mexican Americans (MAM), we define a genomewide single-nucleotide-polymorphism (SNP) panel that can distinguish between chromosomal segments of Amerindian (AMI) or European (EUR) ancestry. These studies used genotypes for >400,000 SNPs, defined in EUR and both Pima and Mayan AMI, to define a set of ancestry-informative markers (AIMs). The use of two AMI populations was necessary to remove a subset of SNPs that distinguished genotypes of only one AMI subgroup from EUR genotypes. The AIMs set contained 8,144 SNPs separated by a minimum of 50 kb with only three intermarker intervals >1 Mb and had EUR/AMI FST values >0.30 (mean FST = 0.48) and Mayan/Pima FST values <0.05 (mean FST < 0.01). Analysis of a subset of these SNP AIMs suggested that this panel may also distinguish ancestry between EUR and other disparate AMI groups, including Quechuan from South America. We show, using realistic simulation parameters that are based on our analyses of MAM genotyping results, that this panel of SNP AIMs provides good power for detecting disease-associated chromosomal segments for genes with modest ethnicity risk ratios. A reduced set of 5,287 SNP AIMs captured almost the same admixture mapping information, but smaller SNP sets showed substantial drop-off in admixture mapping information and power. The results will enable studies of type 2 diabetes, rheumatoid arthritis, and other diseases among which epidemiological studies suggest differences in the distribution of ancestry-associated susceptibility.