Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Crohns Colitis ; 16(4): 668-681, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34633041

RESUMO

BACKGROUND AND AIMS: Histone deacetylase inhibitors [HDACi] exert potent anti-inflammatory effects. Because of the ubiquitous expression of HDACs, clinical utility of HDACi is limited by off-target effects. Esterase-sensitive motif [ESM] technology aims to deliver ESM-conjugated compounds to human mononuclear myeloid cells, based on their expression of carboxylesterase 1 [CES1]. This study aims to investigate utility of an ESM-tagged HDACi in inflammatory bowel disease [IBD]. METHODS: CES1 expression was assessed in human blood, in vitro differentiated macrophage and dendritic cells, and Crohn's disease [CD] colon mucosa, by mass cytometry, quantitative polymerase chain reaction [PCR], and immunofluorescence staining, respectively. ESM-HDAC528 intracellular retention was evaluated by mass spectrometry. Clinical efficacy of ESM-HDAC528 was tested in dextran sulphate sodium [DSS]-induced colitis and T cell transfer colitis models using transgenic mice expressing human CES1 under the CD68 promoter. RESULTS: CES1 mRNA was highly expressed in human blood CD14+ monocytes, in vitro differentiated and lipopolysaccharide [LPS]-stimulated macrophages, and dendritic cells. Specific hydrolysis and intracellular retention of ESM-HDAC528 in CES1+ cells was demonstrated. ESM-HDAC528 inhibited LPS-stimulated IL-6 and TNF-α production 1000 times more potently than its control, HDAC800, in CES1high monocytes. In healthy donor peripheral blood, CES1 expression was significantly higher in CD14++CD16- monocytes compared with CD14+CD16++ monocytes. In CD-inflamed colon, a higher number of mucosal CD68+ macrophages expressed CES1 compared with non-inflamed mucosa. In vivo, ESM-HDAC528 reduced monocyte differentiation in the colon and significantly improved colitis in a T cell transfer model, while having limited potential in ameliorating DSS-induced colitis. CONCLUSIONS: We demonstrate that monocytes and inflammatory macrophages specifically express CES1, and can be preferentially targeted by ESM-HDAC528 to achieve therapeutic benefit in IBD.


Assuntos
Hidrolases de Éster Carboxílico , Colite , Doença de Crohn , Inibidores de Histona Desacetilases , Doenças Inflamatórias Intestinais , Animais , Hidrolases de Éster Carboxílico/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Doença de Crohn/tratamento farmacológico , Doença de Crohn/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Lipopolissacarídeos , Camundongos , Monócitos , Células Mieloides
2.
Front Immunol ; 11: 550769, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123128

RESUMO

Histone deacetylases (HDACs) are a group of enzymes that control histone deacetylation and bear potential to direct expression of large gene sets. We determined the effect of HDAC inhibitors (HDACi) on human monocytes and macrophages, with respect to their polarization, activation, and their capabilities of inducing endotoxin tolerance. To address the role for HDACs in macrophage polarization, we treated monocytes with HDAC3i, HDAC6i or pan-HDACi prior to polarization into M1 or M2 macrophages using IFNγ or IL-4 respectively. To study the HDAC inhibition effect on cytokine expression, macrophages were treated with HDACi prior to LPS-stimulation. TNFα, IL-6, and p40 were measured with ELISA, whereas modifications of Histone 3 and STAT1 were assessed using western blot. To address the role for HDAC3 in repeated LPS challenge induction, HDAC3i or HDAC3 siRNA was added to monocytes prior to incubation with IFNγ, which were then repeatedly challenged with LPS and analyzed by means of protein analyses and transcriptional profiling. Pan-HDACi and HDAC3i reduced cytokine secretion in monocytes and M1 macrophages, whereas HDAC6i yielded no such effect. Notably, neither pan-HDACi nor HDAC3i reduced cytokine secretion in M2 macrophages. In contrast to previous reports in mouse macrophages, HDAC3i did not affect macrophage polarization in human cells. Likewise, HDAC3 was not required for IFNγ signaling or IFNß secretion. Cytokine and gene expression analyses confirmed that IFNγ-treated macrophages consistently develop a cytokine response after LPS repeated challenge, but pretreatment with HDAC3i or HDAC3 siRNA reinstates a state of tolerance reflected by general suppression of tolerizable genes, possibly through decreasing TLRs expression, and particularly TLR4/CD14. The development of endotoxin tolerance in macrophages is important to reduce exacerbated immune response and limit tissue damage. We conclude that HDAC3 is an attractive protein target to mediate macrophage reactivity and tolerance induction in inflammatory macrophages.


Assuntos
Histona Desacetilases/metabolismo , Tolerância Imunológica , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Citocinas/genética , Citocinas/metabolismo , Ativação Enzimática , Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Humanos , Tolerância Imunológica/efeitos dos fármacos , Imunofenotipagem , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Ligação Proteica
3.
Bioelectron Med ; 6: 20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123616

RESUMO

BACKGROUND: Recent evidence demonstrated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) propagates in intestinal epithelial cells expressing Angiotensin-Converting Enzyme 2 (ACE2), implying that these cells represent an important entry site for the viral infection. Nicotinic receptors (nAChRs) have been put forward as potential regulators of inflammation and of ACE2 expression. As vagus nerve stimulation (VNS) activates nAChRs, we aimed to investigate whether VNS can be instrumental in affecting intestinal epithelial ACE2 expression. METHODS: By using publicly available datasets we qualified epithelial ACE2 expression in human intestine, and assessed gene co-expression of ACE2 and SARS-CoV-2 priming Transmembrane Serine Protease 2 (TMPRSS2) with nAChRs in intestinal epithelial cells. Next, we investigated mouse and human ACE2 expression in intestinal tissues after chronic VNS via implanted devices. RESULTS: We show co-expression of ACE2 and TMPRSS2 with nAChRs and α7 nAChR in particular in intestinal stem cells, goblet cells, and enterocytes. However, VNS did not affect ACE2 expression in murine or human intestinal tissue, albeit in colitis setting. CONCLUSIONS: ACE2 and TMPRSS2 are specifically expressed in epithelial cells of human intestine, and both are co-expressed with nAChRs. However, no evidence for regulation of ACE2 expression through VNS could be found. Hence, a therapeutic value of VNS with respect to SARS-CoV-2 infection risk through ACE2 receptor modulation in intestinal epithelia could not be established.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...