Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys Rev ; 16(2): 189-218, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38737201

RESUMO

The formation of a heterogeneous set of advanced glycation end products (AGEs) is the final outcome of a non-enzymatic process that occurs in vivo on long-life biomolecules. This process, known as glycation, starts with the reaction between reducing sugars, or their autoxidation products, with the amino groups of proteins, DNA, or lipids, thus gaining relevance under hyperglycemic conditions. Once AGEs are formed, they might affect the biological function of the biomacromolecule and, therefore, induce the development of pathophysiological events. In fact, the accumulation of AGEs has been pointed as a triggering factor of obesity, diabetes-related diseases, coronary artery disease, neurological disorders, or chronic renal failure, among others. Given the deleterious consequences of glycation, evolution has designed endogenous mechanisms to undo glycation or to prevent it. In addition, many exogenous molecules have also emerged as powerful glycation inhibitors. This review aims to provide an overview on what glycation is. It starts by explaining the similarities and differences between glycation and glycosylation. Then, it describes in detail the molecular mechanism underlying glycation reactions, and the bio-molecular targets with higher propensity to be glycated. Next, it discusses the precise effects of glycation on protein structure, function, and aggregation, and how computational chemistry has provided insights on these aspects. Finally, it reports the most prevalent diseases induced by glycation, and the endogenous mechanisms and the current therapeutic interventions against it.

2.
Chemistry ; 30(36): e202400890, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38687053

RESUMO

It is well-known that people suffering from hyperglycemia have a higher propensity to develop Parkinson's disease (PD). One of the most plausible mechanisms linking these two pathologies is the glycation of neuronal proteins and the pathological consequences of it. α-Synuclein, a key component in PD, can be glycated at its fifteen lysine. In fact, the end products of this process have been detected on aggregated α-synuclein isolated from in vivo. However, the consequences of glycation are not entirely clear, which are of crucial importance to understand the mechanism underlying the connection between diabetes and PD. To better clarify this, we have here examined how methylglyoxal (the most important carbonyl compound found in the cytoplasm) affects the conformation and aggregation propensity of α-synuclein, as well as its ability to cluster and fuse synaptic-like vesicles. The obtained data prove that methylglyoxal induces the Lys-Lys crosslinking through the formation of MOLD. However, this does not have a remarkable effect on the averaged conformational ensemble of α-synuclein, although it completely depletes its native propensity to form soluble oligomers and insoluble amyloid fibrils. Moreover, methylglyoxal has a disrupting effect on the ability of α-synuclein to bind, cluster and fusion synaptic-like vesicles.


Assuntos
Aldeído Pirúvico , alfa-Sinucleína , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Aldeído Pirúvico/química , Aldeído Pirúvico/metabolismo , Humanos , Doença de Parkinson/metabolismo , Agregados Proteicos/efeitos dos fármacos , Conformação Proteica , Glicosilação , Lisina/química , Amiloide/química , Amiloide/metabolismo
4.
J Inorg Biochem ; 247: 112344, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37542850

RESUMO

α-Synuclein (αS) is a presynaptic protein whose aggregates are considered as a hallmark of Parkinson's disease (PD). Although its physiological function is still under debate, it is widely accepted that its functions are always mediated by its interaction with membranes. The association of αS with phospholipid membranes occurs concomitant to its folding from its monomeric, unfolded state towards an antiparallel amphipathic α-helix. Besides this, copper ions can also bind αS and modify its aggregation propensity. The effect of Cu(II) and Cu(I) on the lipid-αS affinity and on the structure of the membrane-bound αS have not yet been studied. This knowledge is relevant to understand the molecular pathogenesis of PD. Therefore, we have here studied the affinities between Cu(II) and Cu(I) and the micelle-bound αS, as well as the effect of these cations on the structure of micelle-bound αS. Cu(II) or Cu(I) did not affect the α-helical structure of the micelle-bound αS. However, while Cu(I) binds at the same sites of αS in the presence or in the absence of micelles, the micelle-bound αS displays different Cu(II) binding sites than unbound αS. In any case, sodium docecyl sulphate -micelles reduce the stability of the αS complexes with both Cu(II) and Cu(I). Finally, we have observed that the micelle-bound αS is still able to prevent the Cu(II)-catalysed oxidation of neuronal metabolites (e.g. ascorbic acid) and the formation of reactive oxygen species, thus this binding does not impair its biological function as part of the antioxidant machinery.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Micelas , Cobre/química , Doença de Parkinson/metabolismo , Cátions
5.
Antioxidants (Basel) ; 12(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37372040

RESUMO

Parkinson's disease (PD) is characterized by dopaminergic neuron degeneration and the accumulation of neuronal inclusions known as Lewy bodies, which are formed by aggregated and post-translationally modified α-synuclein (αS). Oxidative modifications such as the formation of 3-nitrotyrosine (3-NT) or di-tyrosine are found in αS deposits, and they could be promoted by the oxidative stress typical of PD brains. Many studies have tried to elucidate the molecular mechanism correlating nitroxidation, αS aggregation, and PD. However, it is unclear how nitroxidation affects the physiological function of αS. To clarify this matter, we synthetized an αS with its Tyr residues replaced by 3-NT. Its study revealed that Tyr nitroxidation had no effect on either the affinity of αS towards anionic micelles nor the overall structure of the micelle-bound αS, which retained its α-helical folding. Nevertheless, we observed that nitroxidation of Y39 lengthened the disordered stretch bridging the two consecutive α-helices. Conversely, the affinity of αS towards synaptic-like vesicles diminished as a result of Tyr nitroxidation. Additionally, we also proved that nitroxidation precluded αS from performing its physiological function as a catalyst of the clustering and the fusion of synaptic vesicles. Our findings represent a step forward towards the completion of the puzzle that must explain the molecular mechanism behind the link between αS-nitroxidation and PD.

6.
J Ethnopharmacol ; 305: 116120, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36610674

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Eryngium is known for producing a wide range of bioactive compounds with proved medicinal properties. In the last years, research has focused on E. maritimum, with previous studies reporting anticancer, antimicrobial, antioxidant, and anti-inflammatory activities. Ethnobotanical literature suggests that it has been traditionally used to treat a wide range of illnesses, having antitussive, diuretic and aphrodisiac properties. Being rhizome one of the most bioactive organs, much of the available references from traditional uses suggest that it has been specifically used to treat renal diseases. In this sense, inflammation and oxidative processes play a major role in kidney dysfunctions, which could be associated to the mechanism of action of the plant extracts. AIM OF THE STUDY: The main aim of the study was to investigate the effects of E. maritimum rhizome extract on the antioxidant and inflammatory response in human immune cells. MATERIAL AND METHODS: Rhizome extracts were obtained from plants growing in Mallorca (Balearic Islands), and its composition was determined using HPLC-DAD, highlighting simple phenolic compounds such as trans-ferulic acid, catechin, chlorogenic acid, epicatechin and rosmarinic acid as the major constituents. Total antioxidant capacity was determined using the FRAP assay. Jurkat cells were cultured to analyse cytotoxicity by cell viability assay. In parallel, cells were stimulated with phytohemagglutinin and treated with different extract concentrations. Gene and protein expression, as well as nitrite and cytokine levels were evaluated as indicators of metabolic responses. RESULTS: The plant extract showed a high diversity of pharmacologically bioactive compounds with potential therapeutic uses. The extract presented null cytotoxicity and exerted antioxidant and anti-inflammatory effects on Jurkat cells by inducing an antioxidant response and reducing cytokine and nitric oxide release and the expression of pro-inflammatory genes. CONCLUSION: The present findings suggest that E. maritimum is a promising phytotherapeutic species because of its strong antioxidant and anti-inflammatory potential, which could explain some of its traditional uses.


Assuntos
Antioxidantes , Eryngium , Humanos , Antioxidantes/farmacologia , Rizoma , Células Jurkat , Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia
7.
Int J Biol Macromol ; 229: 92-104, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36584779

RESUMO

Human alpha-synuclein (αS) is an intrinsically disordered protein highly expressed in dopaminergic neurons. Its amyloid aggregates are the major component of Lewy bodies, which are considered a hallmark of Parkinson's disease (PD). αS has four different Met, which are particularly sensitive to oxidation, as most of them are found as Met sulfoxide (MetO) in the αS deposits. Consequently, researchers have invested mounting efforts trying to elucidate the molecular mechanisms underlying the links between oxidative stress, αS aggregation and PD. However, it has not been described yet the effect of Met oxidation on the physiological function of αS. Trying to shed light on this aspect, we have here studied a synthetic αS that displayed all its Met replaced by MetO moieties (αS-MetO). Our study has allowed to prove that MetO diminishes the affinity of αS towards anionic micelles (SDS), although the micelle-bound fraction of αS-MetO still adopts an α-helical folding resembling that of the lipid-bound αS. MetO also diminishes the affinity of αS towards synaptic-like vesicles, and its hindering effect is much more pronounced than that displayed on the αS-micelle affinity. Additionally, we have also demonstrated that MetO impairs the physiological function of αS as a catalyst of the clustering and the fusion of synaptic vesicles (SVs). Our findings provide a new understanding on how Met oxidation affects one of the most relevant biological functions attributed to αS that is to bind and cluster SVs along the neurotransmission.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Metionina/metabolismo , Micelas , Vesículas Sinápticas/metabolismo , Doença de Parkinson/metabolismo , Racemetionina/metabolismo
8.
Cell Mol Life Sci ; 79(6): 342, 2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35662377

RESUMO

Parkinson's disease (PD) is one of the most prevalent neurodegenerative disorders affecting the worldwide population. One of its hallmarks is the intraneuronal accumulation of insoluble Lewy bodies (LBs), which cause the death of dopaminergic neurons. α-Synuclein (αS) is the main component of these LBs and in them, it commonly contains non-enzymatic post-translational modifications, such as those resulting from its reaction with reactive carbonyl species arising as side products of the intraneuronal glycolysis (mainly methylglyoxal). Consequently, lysines of the αS found in LBs of diabetic individuals are usually carboxyethylated. A precise comprehension of the effect of Nε-(carboxyethyl)lysine (CEL) on the aggregation of αS and on its physiological function becomes crucial to fully understand the molecular mechanisms underlying the development of diabetes-induced PD. Consequently, we have here used a synthetic αS where all its Lys have been replaced by CEL moieties (αS-CEL), and we have studied how these modifications could impact on the neurotransmission mechanism. This study allows us to describe how the non-enzymatic glycosylation (glycation) affects the function of a protein like αS, involved in the pathogenesis of PD. CEL decreases the ability of αS to bind micelles, although the micelle-bound fraction of αS-CEL still displays an α-helical fold resembling that of the lipid-bound αS. However, CEL completely abolishes the affinity of αS towards synaptic-like vesicles and, consequently, it hampers its physiological function as a catalyst of the clustering and the fusion of the synaptic vesicles.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Neurônios Dopaminérgicos/metabolismo , Glicosilação , Humanos , Doença de Parkinson/patologia , Vesículas Sinápticas/metabolismo , alfa-Sinucleína/metabolismo
9.
Antioxidants (Basel) ; 10(2)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672495

RESUMO

Frataxin is a mitochondrial protein which deficiency causes Friedreich's ataxia, a cardio-neurodegenerative disease. The lack of frataxin induces the dysregulation of mitochondrial iron homeostasis and oxidative stress, which finally causes the neuronal death. The mechanism through which frataxin regulates the oxidative stress balance is rather complex and poorly understood. While the absence of human (Hfra) and yeast (Yfh1) frataxins turn out cells sensitive to oxidative stress, this does not occur when the frataxin gene is knocked-out in E. coli. To better understand the biological roles of Hfra and Yfh1 as endogenous antioxidants, we have studied their ability to inhibit the formation of reactive oxygen species (ROS) from Cu2+- and Fe3+-catalyzed degradation of ascorbic acid. Both proteins drastically reduce the formation of ROS, and during this process they are not oxidized. In addition, we have also demonstrated that merely the presence of Yfh1 or Hfra is enough to protect a highly oxidation-prone protein such as α-synuclein. This unspecific intervention (without a direct binding) suggests that frataxins could act as a shield to prevent the oxidation of a broad set of intracellular proteins, and reinforces that idea that frataxin can be used to prevent neurological pathologies linked to an enhanced oxidative stress.

10.
Int J Biol Macromol ; 169: 251-263, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33345970

RESUMO

α-Synuclein is an intrinsically disordered protein whose aggregation is related to Parkinson's disease and other neurodegenerative disorders. Metal cations are one of the main factors affecting the propensity of α-synuclein to aggregate, either by directly binding to it or by catalyzing the production of reactive oxygen species that oxidize it. His50, Asp121 and several additional C-terminal α-synuclein residues are binding sites for numerous metal cations, while methionine sulfoxidation occurs readily on this protein under oxidative stress conditions. Molecular dynamics simulations are an excellent tool to obtain a microscopic picture of how metal binding or methionine sulfoxidation alter the conformational preferences of α-synuclein and, hence, its aggregation propensity. In this work, we report the first coarse-grained molecular dynamics study comparing the conformational ensembles of the native protein, the protein bound to either Cu2+ or Ca2+ at its main binding sites, and the methionine-sulfoxidized protein. Our results suggest that these events alter the transient α-synuclein intramolecular contacts, inducing a greater solvent exposure of its hydrophobic, aggregation-prone NAC domain, in full agreement with a recent experimental study on Ca2+ binding. Moreover, metal-binding residues directly participate in the long-range contacts that shield this domain and regulate α-synuclein aggregation. These results provide a molecular-level rationalization of the enhanced fibrillation experimentally observed in the presence of Cu2+ or Ca2+ and the oligomerization induced by methionine sulfoxidation.


Assuntos
Cálcio/química , Cobre/química , alfa-Sinucleína/química , Sítios de Ligação , Cálcio/metabolismo , Catálise , Cobre/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas , Metionina/química , Metionina/metabolismo , Simulação de Dinâmica Molecular , Oxirredução , Estresse Oxidativo , Doença de Parkinson/metabolismo , Conformação Proteica/efeitos dos fármacos , alfa-Sinucleína/metabolismo
11.
Biomacromolecules ; 21(12): 5200-5212, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33140640

RESUMO

Intraneuronal aggregation of the intrinsically disordered protein α-synuclein is at the core of Parkinson's disease and related neurodegenerative disorders. Several reports show that the concentration of salts in the medium heavily affects its aggregation rate and fibril morphology, but a characterization of the individual monomeric conformations underlying these effects is still lacking. In this work, we have applied our α-synuclein-optimized coarse-grained molecular dynamics approach to decipher the structural features of the protein monomer under a range of NaCl concentrations (0.0-1.0 M). The results show that key intramolecular contacts between the terminal domains are lost at intermediate concentrations (leading to extended conformations likely to fibrillate), but recovered at high concentrations (leading to compact conformations likely to evolve toward amorphous aggregates). The pattern of direct interactions of the terminal α-synuclein domains with Na+ and Cl- ions plays a key role in explaining this effect. Our results are consistent with a recent study reporting a fibrillation enhancement at moderate NaCl concentrations but an inhibition at higher concentrations. The present work will contribute to improving our understanding of the structural features of monomeric α-synuclein, determining its NaCl-induced fibrillation propensity and the molecular basis of synucleinopathies, necessary for the future development of disease-halting therapies.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , Simulação de Dinâmica Molecular , Cloreto de Sódio
12.
Sci Total Environ ; 738: 140096, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32806372

RESUMO

According to ISO 17402:2008 more knowledge is needed on processes controlling bioavailability of organic species so as to close the still existing gap between chemical measurements and biological effects. The bioavailability concept encompasses the investigation of the degree of penetration of target species across biological membranes. In addition, REACH (Registration, Evaluation, Authorisation and restriction of Chemicals) guidelines promote the use of in-vitro methods against conventional ecotoxicological tests because of the ethical controversy of in-vivo tests. This work is aimed at filling the gap by proposing a multidisciplinary approach based on high-resolution and low-resolution empirical techniques, and theoretical quantum mechanics for the in-vitro investigation of the bioavailability and membranotropic effects of organic emerging contaminants, including bioaccumulation, via passive diffusion across lipid bilayers. Phosphatidylcholine (PC) liposomes are selected as biomembrane surrogates, and contaminant effects are explored by (i) fluorescence anisotropy and generalized polarization assays using membrane fluorescence probes (laurdan and prodan) and UV-Vis spectroscopy, (ii) 1H NMR measurements to ascertain supramolecular interactions with PC and (iii) molecular dynamics simulations. In particular, un-regulated model compounds with distinct physico-chemical properties that are representative of three different classes of emerging contaminants in environmental compartments are chosen for validation of the holistic approach: (i) diclofenac as a model of anti-inflammatory drug; (ii) triclosan as an anti-microbial agent; and (iii) bisphenol A as a plastic-borne compound, and compared with chlorpyrifos as a legacy insecticide. Laurdan anisotropic measurements are in good agreement with 1H NMR data and both approaches pinpoint that triclosan and chlorpyrifos are highly bioaccumulative in membranes. Molecular dynamic studies indicate that the lateral diffusion of the lipid bilayer is much lower with the incorporation of either triclosan or chlorpyrifos into the bilayer. The theoretical simulations also allowed estimating absolute bioavailability data under passive diffusion (<0.1%, 63%, 73% and 89% for diclofenac, bisphenol A, triclosan and chlorpyrifos, respectively) given as the percentage of time that a given species is located in the region of the fatty acyl chains. Our findings indicate that PC-based liposome assays serve as a fast and cost-effective in-vitro approach, notwithstanding its low resolution features, for environmental bioavailability studies of emerging contaminants for which insufficient or inconsistent ecotoxicological data are identified in the literature.


Assuntos
Lipossomos , Triclosan , Disponibilidade Biológica , Difusão , Fosfatidilcolinas
13.
Neural Regen Res ; 15(10): 1840-1841, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32246626
14.
Chem Sci ; 11(12): 3332-3344, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34122841

RESUMO

α-Synuclein (αS) aggregation is a hallmark in several neurodegenerative diseases. Among them, Parkinson's disease is highlighted, characterized by the intraneuronal deposition of Lewy bodies (LBs) which causes the loss of dopaminergic neurons. αS is the main component of LBs and in them, it usually contains post-translational modifications. One of them is the formation of advanced glycation end-products (mainly CEL and MOLD) arising from its reaction with methylglyoxal. Despite its biological relevance, there are no data available proving the effect of glycation on the conformation of αS, nor on its aggregation mechanism. This has been hampered by the formation of a heterogeneous set of compounds that precluded conformational studies. To overcome this issue, we have here produced αS homogeneously glycated with CEL. Its use, together with different biophysical techniques and molecular dynamics simulations, allowed us to study for the first time the effect of glycation on the conformation of a protein. CEL extended the conformation of the N-terminal domain as a result of the loss of transient N-/C-terminal long-range contacts while increasing the heterogeneity of the conformational population. CEL also inhibited the αS aggregation, but it was not able to disassemble preexisting amyloid fibrils, thus proving that CEL found on LBs must be formed in a later event after aggregation.

15.
Antioxidants (Basel) ; 8(9)2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31480509

RESUMO

Pyridoxamine, one of the natural forms of vitamin B6, is known to be an effective inhibitor of the formation of advanced glycation end products (AGEs), which are closely related to various human diseases. Pyridoxamine forms stable complexes with metal ions that catalyze the oxidative reactions taking place in the advanced stages of the protein glycation cascade. It also reacts with reactive carbonyl compounds generated as byproducts of protein glycation, thereby preventing further protein damage. We applied Density Functional Theory to study the primary antioxidant activity of pyridoxamine towards three oxygen-centered radicals (•OOH, •OOCH3 and •OCH3) to find out whether this activity may also play a crucial role in the context of protein glycation inhibition. Our results show that, at physiological pH, pyridoxamine can trap the •OCH3 radical, in both aqueous and lipidic media, with rate constants in the diffusion limit (>1.0 × 108 M - 1 s - 1 ). The quickest pathways involve the transfer of the hydrogen atoms from the protonated pyridine nitrogen, the protonated amino group or the phenolic group. Its reactivity towards •OOH and •OOCH3 is smaller, but pyridoxamine can still scavenge them with moderate rate constants in aqueous media. Since reactive oxygen species are also involved in the formation of AGEs, these results highlight that the antioxidant capacity of pyridoxamine is also relevant to explain its inhibitory role on the glycation process.

16.
ACS Chem Neurosci ; 10(6): 2919-2930, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-30973706

RESUMO

Human α-synuclein is a small monomeric protein (140 residues) essential to maintain the function of the dopaminergic neurons and the neuronal redox balance. However, it holds a dark side since it is able to clump inside the neurons forming insoluble aggregates known as Lewy bodies, which are considered the hallmark of Parkinson's disease. Sporadic mutations and nonenzymatic post-translational modifications are well-known to stimulate the formation of Lewy bodies. Yet, the effect of nonenzymatic post-translational modifications on the function of α-synuclein has been studied less intense. Therefore, here we study how nitration and glycation mediated by methylglyoxal affect the redox features of α-synuclein. Both diminish the ability of α-synuclein to chelate Cu2+, except when Nε-(carboxyethyl)lysine or Nε-(carboxymethyl)lysine (two advanced glycation end products highly prevalent in vivo) are formed. This results in a lower capacity to prevent the Cu-catalyzed ascorbic acid degradation and to delay the formation of H2O2. However, only methylglyoxal was able to abolish the ability of α-synuclein to inhibit the free radical release. Both nitration and glycation enhanced the α-synuclein availability to be damaged by O2•-, although glycation made α-synuclein less reactive toward HO•. Our data represent the first report describing how nonenzymatic post-translational modifications might affect the redox function of α-synuclein, thus contributing to a better understanding of its pathological implications.


Assuntos
Processamento de Proteína Pós-Traducional/fisiologia , Espécies Reativas de Oxigênio/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Cobre/metabolismo , Glicosilação , Humanos , Nitrosação , Oxirredução
17.
J Chem Inf Model ; 59(4): 1458-1471, 2019 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-30933517

RESUMO

Intrinsically disordered proteins (IDPs) are not well described by a single 3D conformation but by an ensemble of them, which makes their structural characterization especially challenging, both experimentally and computationally. Most all-atom force fields are designed for folded proteins and give too compact IDP conformations. α-Synuclein is a well-known IDP because of its relation to Parkinson's disease (PD). To understand its role in this disease at the molecular level, an efficient methodology is needed for the generation of conformational ensembles that are consistent with its known properties (in particular, with its dimensions) and that is readily extensible to post-translationally modified forms of the protein, commonly found in PD patients. Herein, we have contributed to this goal by performing explicit-solvent, microsecond-long Replica Exchange with Solute Scaling (REST2) simulations of α-synuclein with the coarse-grained force field SIRAH, finding that a 30% increase in the default strength of protein-water interactions yields a much better reproduction of its radius of gyration. Other known properties of α-synuclein, such as chemical shifts, secondary structure content, and long-range contacts, are also reproduced. Furthermore, we have simulated a glycated form of α-synuclein to suggest the extensibility of the method to its post-translationally modified forms. The computationally efficient REST2 methodology in combination with coarse-grained representations will facilitate the simulations of this relevant IDP and its modified forms, enabling a better understanding of their roles in disease and potentially leading to efficient therapies.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Simulação de Dinâmica Molecular , alfa-Sinucleína/química , Sequência de Aminoácidos , Dobramento de Proteína , Estrutura Secundária de Proteína
18.
Int J Biol Macromol ; 129: 254-266, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30738904

RESUMO

The understanding of the effect of non-enzymatic post-translational modifications on the protein structure is essential to unveil the molecular mechanisms underlying their related pathological processes. Among those modifications, protein glycation emerges as one of the main responsible for the development of diabetes-related diseases. While some reports suggest that glycation has a chaotropic effect, others indicate that it does not modify the protein structure. Here we aim to better clarify this effect and therefore, we have studied the effect of glycation mediated by ribose and methylglyoxal on a fifteen-residue model peptide, which readily undergoes a pH-induced coil-helix transition. Neither ribose nor methylglyoxal were able to induce the structuration of the peptide at physiological pH. Moreover, neither ribose nor methylglyoxal severely modified the α-helical structure acquired by the peptide at pH ~ 3. Among the different glycation products experimentally detected (i.e. the ribose-derived Schiff base; the Amadori compound; Nε-(carboxyethyl)lysine; Nε-(carboxymethyl)lysine; and MOLD), the Amadori compound was the one with the greatest impact on the α-helicity. Our data contribute to clarify the effect of glycation on the structure of proteins by proving that the glycation products do not necessarily affect the α-helical structure of a peptide stretch.


Assuntos
Peptídeos/química , Conformação Proteica em alfa-Hélice , Produtos Finais de Glicação Avançada/química , Glicosilação , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Simulação de Dinâmica Molecular , Peptídeos/síntese química , Peptídeos/metabolismo , Bases de Schiff/química , Análise Espectral
19.
Sci Rep ; 8(1): 9619, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941991

RESUMO

Myo-inositol hexaphosphate (phytate; IP6) is a natural compound that is abundant in cereals, legumes, and nuts and it has the ability to chelate metal cations. The binding of IP6 to transition metals suggests that it could be used for the treatment of metal-catalyzed protein glycation, which appears to trigger diabetes-related diseases. Our in vitro studies showed that IP6 reduced the formation of Fe3+-catalyzed advanced glycation end-products (AGEs). This led us to perform a randomized cross-over trial to investigate the impact of the daily consumption IP6 on protein glycation in patients with type 2 diabetes mellitus (T2DM; n = 33). Thus, we measured AGEs, glycated hemoglobin (HbA1c), several vascular risk factors, and urinary IP6 at baseline and at the end of the intervention period. Patients who consumed IP6 supplements for 3 months had lower levels of circulating AGEs and HbA1c than those who did not consume IP6. This is the first report to show that consumption of IP6 inhibits protein glycation in patients with T2DM. Considering that AGEs contribute to microvascular and macrovascular complications in T2DM, our data indicates that dietary supplementation with IP6 should be considered as a therapy to prevent the formation of AGEs and therefore, the development of diabetes-related diseases in patients with T2DM.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Ácido Fítico/farmacologia , Idoso , Glicemia/metabolismo , Estudos Cross-Over , Diabetes Mellitus Tipo 2/sangue , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Ácido Fítico/efeitos adversos , Segurança
20.
J Phys Chem A ; 122(2): 690-699, 2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29243928

RESUMO

The interactions between the protein α-synuclein and the Zn(II) and Al(III) cations at different sites were studied at the M06/6-311+G(d,p)/SMD and the ωB97X-D/6-311+G(d,p)/SMD levels of theory. For Zn(II), previous experimental studies determined the presence of a high affinity site at Asp121 and a lower affinity one at His50. As for Al(III), an in vitro study showed it to be the most effective cation to induce structural changes in α-synuclein and to accelerate its aggregation. Besides Zn(II) and Al(III), Cu(II) also binds α-synuclein (in fact, its complexes are the most studied and the best characterized ones) forming square planar complexes, and several binding sites are known for it, involving Met1-Asp2 (only in nonacetylated α-synuclein), His50, and Asp121. Herein, we applied a simple theoretical methodology, which satisfactorily reproduces experimental geometries and energies for complexes of N-terminally acetylated α-synuclein with Cu(II), to study Zn(II) and Al(III) complexes at those same sites, as well as at some structurally analogous alternative sites. We found binding geometries for Zn(II) and Al(III) that differ from the ones for Cu(II). These results can help to understand the interactions between α-synuclein and metals, one of the factors leading to the formation of potentially neurotoxic α-synuclein aggregates.


Assuntos
Alumínio/química , Teoria Quântica , Zinco/química , alfa-Sinucleína/química , Acetilação , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...