Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 19(1): 174, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30359306

RESUMO

BACKGROUND: Transcription factor (TF) binding to regulatory DNA sites is a key determinant of cell identity within multi-cellular organisms and has been studied extensively in relation to site affinity and chromatin modifications. There has been a strong focus on the inference of TF-gene regulatory networks and TF-TF physical interaction networks. Here, we present a third type of TF network, the spatial network of co-localized TF binding sites within the three-dimensional genome. RESULTS: Using published canonical Hi-C data and single-cell genome structures, we assess the spatial proximity of a genome-wide array of potential TF-TF co-localizations in human and mouse cell lines. For individual TFs, the abundance of occupied binding sites shows a positive correspondence with their clustering in three dimensions, and this is especially apparent for weak TF binding sites and at enhancer regions. An analysis between different TF proteins identifies significantly proximal pairs, which are enriched in reported physical interactions. Furthermore, clustering of different TFs based on proximity enrichment identifies two partially segregated co-localization sub-networks, involving different TFs in different cell types. Using data from both human lymphoblastoid cells and mouse embryonic stem cells, we find that these sub-networks are enriched within, but not exclusive to, different chromosome sub-compartments that have been identified previously in Hi-C data. CONCLUSIONS: This suggests that the association of TFs within spatial networks is closely coupled to gene regulatory networks. This applies to both differentiated and undifferentiated cells and is a potential causal link between lineage-specific TF binding and chromosome sub-compartment segregation.


Assuntos
Cromatina/metabolismo , Redes Reguladoras de Genes , Mamíferos/genética , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Genes Reporter , Genoma , Humanos , Linfócitos/metabolismo , Camundongos , Especificidade de Órgãos/genética
2.
PLoS Comput Biol ; 12(8): e1005072, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27551778

RESUMO

Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete pipeline for the analysis of single cell qPCR data that uses the mathematics behind bursty expression to develop more accurate and robust algorithms for analyzing the origin of heterogeneity in experimental samples, specifically an algorithm for clustering cells by their bursting behavior (Simulated Annealing for Bursty Expression Clustering, SABEC) and a statistical tool for comparing the kinetic parameters of bursty expression across populations of cells (Estimation of Parameter changes in Kinetics, EPiK). We applied these methods to hematopoiesis, including a new single cell dataset in which transcription factors (TFs) involved in the earliest branchpoint of blood differentiation were individually up- and down-regulated. We could identify two unique sub-populations within a seemingly homogenous group of hematopoietic stem cells. In addition, we could predict regulatory mechanisms controlling the expression levels of eighteen key hematopoietic transcription factors throughout differentiation. Detailed information about gene regulatory mechanisms can therefore be obtained simply from high throughput single cell gene expression data, which should be widely applicable given the rapid expansion of single cell genomics.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Análise de Célula Única/métodos , Algoritmos , Animais , Linhagem Celular , Biologia Computacional , Simulação por Computador , Hematopoese/genética , Hematopoese/fisiologia , Humanos , Cinética , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Nat Cell Biol ; 17(12): 1569-76, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26551273

RESUMO

In contrast to planes, three-dimensional (3D) structures such as tubes are physically anisotropic. Tubular organs exhibit a striking orientation of landmarks according to the physical anisotropy of the 3D shape, in addition to planar cell polarization. However, the influence of 3D tissue topography on the constituting cells remains underexplored. Here, we identify a regulatory network polarizing cellular biochemistry according to the physical anisotropy of the 3D tube geometry (tube cell polarization) by a genome-wide, tissue-specific RNAi screen. During Drosophila airway remodelling, each apical cellular junction is equipotent to establish perpendicular actomyosin cables, irrespective of the longitudinal or transverse tube axis. A dynamic transverse enrichment of atypical protein kinase C (aPKC) shifts the balance and transiently targets activated small GTPase RhoA, myosin phosphorylation and Rab11 vesicle trafficking to longitudinal junctions. We propose that the PAR complex translates tube physical anisotropy into longitudinal junctional anisotropy, where cell-cell communication aligns the contractile cytoskeleton of neighbouring cells.


Assuntos
Polaridade Celular , Drosophila melanogaster/citologia , Junções Intercelulares/metabolismo , Sistema Respiratório/citologia , Actinas/genética , Actinas/metabolismo , Remodelação das Vias Aéreas , Animais , Animais Geneticamente Modificados , Anisotropia , Comunicação Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Feminino , Redes Reguladoras de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Larva/citologia , Larva/metabolismo , Masculino , Microscopia Confocal , Miosinas/genética , Miosinas/metabolismo , Fosforilação , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Interferência de RNA , Sistema Respiratório/embriologia , Sistema Respiratório/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
4.
BMC Bioinformatics ; 16: 265, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26289072

RESUMO

BACKGROUND: Scoring DNA sequences against Position Weight Matrices (PWMs) is a widely adopted method to identify putative transcription factor binding sites. While common bioinformatics tools produce scores that can reflect the binding strength between a specific transcription factor and the DNA, these scores are not directly comparable between different transcription factors. Other methods, including p-value associated approaches (Touzet H, Varré J-S. Efficient and accurate p-value computation for position weight matrices. Algorithms Mol Biol. 2007;2(1510.1186):1748-7188), provide more rigorous ways to identify potential binding sites, but their results are difficult to interpret in terms of binding energy, which is essential for the modeling of transcription factor binding dynamics and enhancer activities. RESULTS: Here, we provide two different ways to find the scaling parameter λ that allows us to infer binding energy from a PWM score. The first approach uses a PWM and background genomic sequence as input to estimate λ for a specific transcription factor, which we applied to show that λ distributions for different transcription factor families correspond with their DNA binding properties. Our second method can reliably convert λ between different PWMs of the same transcription factor, which allows us to directly compare PWMs that were generated by different approaches. CONCLUSION: These two approaches provide computationally efficient ways to scale PWM scores and estimate the strength of transcription factor binding sites in quantitative studies of binding dynamics. Their results are consistent with each other and previous reports in most of cases.


Assuntos
Algoritmos , Biologia Computacional/métodos , DNA/metabolismo , Matrizes de Pontuação de Posição Específica , Análise de Sequência de DNA/métodos , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Imunoprecipitação da Cromatina , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vertebrados/genética , Vertebrados/metabolismo
5.
EMBO J ; 34(14): 1889-904, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26069324

RESUMO

The conserved Notch pathway functions in diverse developmental and disease-related processes, requiring mechanisms to ensure appropriate target selection and gene activation in each context. To investigate the influence of chromatin organisation and dynamics on the response to Notch signalling, we partitioned Drosophila chromatin using histone modifications and established the preferred chromatin conditions for binding of Su(H), the Notch pathway transcription factor. By manipulating activity of a co-operating factor, Lozenge/Runx, we showed that it can help facilitate these conditions. While many histone modifications were unchanged by Su(H) binding or Notch activation, we detected rapid changes in acetylation of H3K56 at Notch-regulated enhancers. This modification extended over large regions, required the histone acetyl-transferase CBP and was independent of transcription. Such rapid changes in H3K56 acetylation appear to be a conserved indicator of enhancer activation as they also occurred at the mammalian Notch-regulated Hey1 gene and at Drosophila ecdysone-regulated genes. This intriguing example of a core histone modification increasing over short timescales may therefore underpin changes in chromatin accessibility needed to promote transcription following signalling activation.


Assuntos
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Histonas/metabolismo , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Acetilação , Animais , Proteínas de Ciclo Celular/genética , DNA Intergênico , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Ecdisona/metabolismo , Regulação da Expressão Gênica , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/genética , Receptores Notch/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
6.
Nucleic Acids Res ; 43(1): 84-94, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25432957

RESUMO

The binding of transcription factors (TFs) is essential for gene expression. One important characteristic is the actual occupancy of a putative binding site in the genome. In this study, we propose an analytical model to predict genomic occupancy that incorporates the preferred target sequence of a TF in the form of a position weight matrix (PWM), DNA accessibility data (in the case of eukaryotes), the number of TF molecules expected to be bound specifically to the DNA and a parameter that modulates the specificity of the TF. Given actual occupancy data in the form of ChIP-seq profiles, we backwards inferred copy number and specificity for five Drosophila TFs during early embryonic development: Bicoid, Caudal, Giant, Hunchback and Kruppel. Our results suggest that these TFs display thousands of molecules that are specifically bound to the DNA and that whilst Bicoid and Caudal display a higher specificity, the other three TFs (Giant, Hunchback and Kruppel) display lower specificity in their binding (despite having PWMs with higher information content). This study gives further weight to earlier investigations into TF copy numbers that suggest a significant proportion of molecules are not bound specifically to the DNA.


Assuntos
Elementos Reguladores de Transcrição , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Núcleo Celular/metabolismo , DNA/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Genômica , Matrizes de Pontuação de Posição Específica , Ligação Proteica
7.
Naunyn Schmiedebergs Arch Pharmacol ; 388(2): 143-52, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24915993

RESUMO

Among the anti-tumor genes (tumor suppressors and metastasis suppressors), the von-Hippel Lindau gene and the Nm23 family of genes are among the more intriguing ones. Both are small (long and short forms of VHL are 30 and 19 kD, respectively, and Nm23 is ~17 kD), and both possess diverse molecular and cellular functions. Despite extensive studies, the entire spectra of functions and the molecular function-phenotype correlation of these two proteins have not been completely elucidated. In this report, we present data showing these two proteins interact physically. We also summarize and confirm the previous studies that demonstrated the endocytic function of these two genes and further show that the endocytic function of VHL is mediated through the activity of Nm23. These functional and molecular interactions are evolutionarily conserved from Drosophila to human.


Assuntos
Proteínas de Drosophila/metabolismo , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Núcleosídeo-Difosfato Quinase/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Linhagem Celular Tumoral , DNA Complementar/genética , Drosophila/genética , Proteínas de Drosophila/genética , Células HEK293 , Humanos , Nucleosídeo NM23 Difosfato Quinases/genética , Núcleosídeo-Difosfato Quinase/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Proteína Supressora de Tumor Von Hippel-Lindau/genética
8.
Comput Struct Biotechnol J ; 10(17): 63-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25349675

RESUMO

The organization of binding sites in cis-regulatory elements (CREs) can influence gene expression through a combination of physical mechanisms, ranging from direct interactions between TF molecules to DNA looping and transient chromatin interactions. The study of simple and common building blocks in promoters and other CREs allows us to dissect how all of these mechanisms work together. Many adjacent TF binding sites for the same TF species form homotypic clusters, and these CRE architecture building blocks serve as a prime candidate for understanding interacting transcriptional mechanisms. Homotypic clusters are prevalent in both bacterial and eukaryotic genomes, and are present in both promoters as well as more distal enhancer/silencer elements. Here, we review previous theoretical and experimental studies that show how the complexity (number of binding sites) and spatial organization (distance between sites and overall distance from transcription start sites) of homotypic clusters influence gene expression. In particular, we describe how homotypic clusters modulate the temporal dynamics of TF binding, a mechanism that can affect gene expression, but which has not yet been sufficiently characterized. We propose further experiments on homotypic clusters that would be useful in developing mechanistic models of gene expression.

9.
Nucleic Acids Res ; 42(16): 10550-63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25114055

RESUMO

Regulation of transcription is fundamental to development and physiology, and occurs through binding of transcription factors to specific DNA sequences in the genome. CSL (CBF1/Suppressor of Hairless/LAG-1), a core component of the Notch signaling pathway, is one such transcription factor that acts in concert with co-activators or co-repressors to control the activity of associated target genes. One fundamental question is how CSL can recognize and select among different DNA sequences available in vivo and whether variations between selected sequences can influence its function. We have therefore investigated CSL-DNA recognition using computational approaches to analyze the energetics of CSL bound to different DNAs and tested the in silico predictions with in vitro and in vivo assays. Our results reveal novel aspects of CSL binding that may help explain the range of binding observed in vivo. In addition, using molecular dynamics simulations, we show that domain-domain correlations within CSL differ significantly depending on the DNA sequence bound, suggesting that different DNA sequences may directly influence CSL function. Taken together, our results, based on computational chemistry approaches, provide valuable insights into transcription factor-DNA binding, in this particular case increasing our understanding of CSL-DNA interactions and how these may impact on its transcriptional control.


Assuntos
Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Elementos Reguladores de Transcrição , Sítios de Ligação , Simulação por Computador , Sequência Consenso , Citosina/análise , DNA/química , DNA/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/química , Simulação de Dinâmica Molecular , Motivos de Nucleotídeos , Ligação Proteica , Software
10.
Nucleic Acids Res ; 42(7): 4196-207, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24476912

RESUMO

Site-specific transcription factors (TFs) bind to their target sites on the DNA, where they regulate the rate at which genes are transcribed. Bacterial TFs undergo facilitated diffusion (a combination of 3D diffusion around and 1D random walk on the DNA) when searching for their target sites. Using computer simulations of this search process, we show that the organization of the binding sites, in conjunction with TF copy number and binding site affinity, plays an important role in determining not only the steady state of promoter occupancy, but also the order at which TFs bind. These effects can be captured by facilitated diffusion-based models, but not by standard thermodynamics. We show that the spacing of binding sites encodes complex logic, which can be derived from combinations of three basic building blocks: switches, barriers and clusters, whose response alone and in higher orders of organization we characterize in detail. Effective promoter organizations are commonly found in the E. coli genome and are highly conserved between strains. This will allow studies of gene regulation at a previously unprecedented level of detail, where our framework can create testable hypothesis of promoter logic.


Assuntos
Escherichia coli/genética , Regiões Promotoras Genéticas , Sítios de Ligação , Fatores de Transcrição/metabolismo
11.
PLoS One ; 8(9): e73714, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086290

RESUMO

Transcription factors (TFs) are proteins that bind to specific sites on the DNA and regulate gene activity. Identifying where TF molecules bind and how much time they spend on their target sites is key to understanding transcriptional regulation. It is usually assumed that the free energy of binding of a TF to the DNA (the affinity of the site) is highly correlated to the amount of time the TF remains bound (the occupancy of the site). However, knowing the binding energy is not sufficient to infer actual binding site occupancy. This mismatch between the occupancy predicted by the affinity and the observed occupancy may be caused by various factors, such as TF abundance, competition between TFs or the arrangement of the sites on the DNA. We investigated the relationship between the affinity of a TF for a set of binding sites and their occupancy. In particular, we considered the case of the transcription factor lac repressor (lacI) in E.coli, and performed stochastic simulations of the TF dynamics on the DNA for various combinations of lacI abundance and competing TFs that contribute to macromolecular crowding. We also investigated the relationship of site occupancy and the information content of position weight matrices (PWMs) used to represent binding sites. Our results showed that for medium and high affinity sites, TF competition does not play a significant role for genomic occupancy except in cases when the abundance of the TF is significantly increased, or when the PWM displays relatively low information content. Nevertheless, for medium and low affinity sites, an increase in TF abundance (for both cognate and non-cognate molecules) leads to an increase in occupancy at several sites.


Assuntos
DNA/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação
12.
Front Genet ; 4: 197, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24109486

RESUMO

Transcription factor (TF) molecules translocate by facilitated diffusion (a combination of 3D diffusion around and 1D random walk on the DNA). Despite the attention this mechanism received in the last 40 years, only a few studies investigated the influence of the cellular environment on the facilitated diffusion mechanism and, in particular, the influence of "other" DNA binding proteins competing with the TF molecules for DNA space. Molecular crowding on the DNA is likely to influence the association rate of TFs to their target site and the steady state occupancy of those sites, but it is still not clear how it influences the search in a genome-wide context, when the model includes biologically relevant parameters (such as: TF abundance, TF affinity for DNA and TF dynamics on the DNA). We performed stochastic simulations of TFs performing the facilitated diffusion mechanism, and considered various abundances of cognate and non-cognate TFs. We show that, for both obstacles that move on the DNA and obstacles that are fixed on the DNA, changes in search time are not statistically significant in case of biologically relevant crowding levels on the DNA. In the case of non-cognate proteins that slide on the DNA, molecular crowding on the DNA always leads to statistically significant lower levels of occupancy, which may confer a general mechanism to control gene activity levels globally. When the "other" molecules are immobile on the DNA, we found a completely different behavior, namely: the occupancy of the target site is always increased by higher molecular crowding on the DNA. Finally, we show that crowding on the DNA may increase transcriptional noise through increased variability of the occupancy time of the target sites.

13.
PLoS One ; 8(6): e66826, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23799133

RESUMO

During embryonic development, a complex organism is formed from a single starting cell. These processes of growth and differentiation are driven by large transcriptional changes, which are following the expression and activity of transcription factors (TFs). This study sought to compare TF expression during embryonic development in a diverse group of metazoan animals: representatives of vertebrates (Danio rerio, Xenopus tropicalis), a chordate (Ciona intestinalis) and invertebrate phyla such as insects (Drosophila melanogaster, Anopheles gambiae) and nematodes (Caenorhabditis elegans) were sampled, The different species showed overall very similar TF expression patterns, with TF expression increasing during the initial stages of development. C2H2 zinc finger TFs were over-represented and Homeobox TFs were under-represented in the early stages in all species. We further clustered TFs for each species based on their quantitative temporal expression profiles. This showed very similar TF expression trends in development in vertebrate and insect species. However, analysis of the expression of orthologous pairs between more closely related species showed that expression of most individual TFs is not conserved, following the general model of duplication and diversification. The degree of similarity between TF expression between Xenopus tropicalis and Danio rerio followed the hourglass model, with the greatest similarity occuring during the early tailbud stage in Xenopus tropicalis and the late segmentation stage in Danio rerio. However, for Drosophila melanogaster and Anopheles gambiae there were two periods of high TF transcriptome similarity, one during the Arthropod phylotypic stage at 8-10 hours into Drosophila development and the other later at 16-18 hours into Drosophila development.


Assuntos
Desenvolvimento Embrionário , Fatores de Transcrição/genética , Animais , Anopheles/embriologia , Anopheles/genética , Anopheles/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ciona intestinalis/embriologia , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Transcrição/metabolismo , Transcriptoma , Xenopus/embriologia , Xenopus/genética , Xenopus/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
14.
PLoS Genet ; 9(1): e1003195, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23326246

RESUMO

The NK homeodomain factor Tinman is a crucial regulator of early mesoderm patterning and, together with the GATA factor Pannier and the Dorsocross T-box factors, serves as one of the key cardiogenic factors during specification and differentiation of heart cells. Although the basic framework of regulatory interactions driving heart development has been worked out, only about a dozen genes involved in heart development have been designated as direct Tinman target genes to date, and detailed information about the functional architectures of their cardiac enhancers is lacking. We have used immunoprecipitation of chromatin (ChIP) from embryos at two different stages of early cardiogenesis to obtain a global overview of the sequences bound by Tinman in vivo and their linked genes. Our data from the analysis of ~50 sequences with high Tinman occupancy show that the majority of such sequences act as enhancers in various mesodermal tissues in which Tinman is active. All of the dorsal mesodermal and cardiac enhancers, but not some of the others, require tinman function. The cardiac enhancers feature diverse arrangements of binding motifs for Tinman, Pannier, and Dorsocross. By employing these cardiac and non-cardiac enhancers in machine learning approaches, we identify a novel motif, termed CEE, as a classifier for cardiac enhancers. In vivo assays for the requirement of the binding motifs of Tinman, Pannier, and Dorsocross, as well as the CEE motifs in a set of cardiac enhancers, show that the Tinman sites are essential in all but one of the tested enhancers; although on occasion they can be functionally redundant with Dorsocross sites. The enhancers differ widely with respect to their requirement for Pannier, Dorsocross, and CEE sites, which we ascribe to their different position in the regulatory circuitry, their distinct temporal and spatial activities during cardiogenesis, and functional redundancies among different factor binding sites.


Assuntos
Sítios de Ligação , Proteínas de Drosophila , Drosophila melanogaster , Miocárdio , Proteínas Repressoras , Transativadores , Animais , Sequência de Bases , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma de Inseto , Coração/crescimento & desenvolvimento , Mesoderma/crescimento & desenvolvimento , Mesoderma/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
PLoS Comput Biol ; 8(11): e1002725, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144600

RESUMO

Inferring the combinatorial regulatory code of transcription factors (TFs) from genome-wide TF binding profiles is challenging. A major reason is that TF binding profiles significantly overlap and are therefore highly correlated. Clustered occurrence of multiple TFs at genomic sites may arise from chromatin accessibility and local cooperation between TFs, or binding sites may simply appear clustered if the profiles are generated from diverse cell populations. Overlaps in TF binding profiles may also result from measurements taken at closely related time intervals. It is thus of great interest to distinguish TFs that directly regulate gene expression from those that are indirectly associated with gene expression. Graphical models, in particular Bayesian networks, provide a powerful mathematical framework to infer different types of dependencies. However, existing methods do not perform well when the features (here: TF binding profiles) are highly correlated, when their association with the biological outcome is weak, and when the sample size is small. Here, we develop a novel computational method, the Neighbourhood Consistent PC (NCPC) algorithms, which deal with these scenarios much more effectively than existing methods do. We further present a novel graphical representation, the Direct Dependence Graph (DDGraph), to better display the complex interactions among variables. NCPC and DDGraph can also be applied to other problems involving highly correlated biological features. Both methods are implemented in the R package ddgraph, available as part of Bioconductor (http://bioconductor.org/packages/2.11/bioc/html/ddgraph.html). Applied to real data, our method identified TFs that specify different classes of cis-regulatory modules (CRMs) in Drosophila mesoderm differentiation. Our analysis also found depletion of the early transcription factor Twist binding at the CRMs regulating expression in visceral and somatic muscle cells at later stages, which suggests a CRM-specific repression mechanism that so far has not been characterised for this class of mesodermal CRMs.


Assuntos
Biologia Computacional/métodos , Modelos Genéticos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Algoritmos , Animais , Teorema de Bayes , Sítios de Ligação , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Embrião não Mamífero , Mesoderma/metabolismo , Modelos Moleculares , Fatores de Transcrição/química
16.
PLoS One ; 7(11): e47452, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23139745

RESUMO

Polyglutamine (polyQ) diseases represent a neuropathologically heterogeneous group of disorders. The common theme of these disorders is an elongated polyQ tract in otherwise unrelated proteins. So far, only symptomatic treatment can be applied to patients suffering from polyQ diseases. Despite extensive research, the molecular mechanisms underlying polyQ-induced toxicity are largely unknown. To gain insight into polyQ pathology, we performed a large-scale RNAi screen in Drosophila to identify modifiers of toxicity induced by expression of truncated Ataxin-3 containing a disease-causing polyQ expansion. We identified various unknown modifiers of polyQ toxicity. Large-scale analysis indicated a dissociation of polyQ aggregation and toxicity.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Peptídeos/toxicidade , Interferência de RNA , Proteínas Repressoras/metabolismo , Animais , Ataxina-3 , Biologia Computacional , Proteínas de Drosophila/química , Modelos Biológicos , Proteínas do Tecido Nervoso/química , Proteínas Nucleares/química , Peptídeos/química , Estrutura Quaternária de Proteína , Proteínas Repressoras/química , Retina/efeitos dos fármacos , Retina/patologia
17.
Mol Biosyst ; 8(11): 2815-27, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22892851

RESUMO

The binding of site-specific transcription factors to their genomic target sites is a key step in gene regulation. While the genome is huge, transcription factors belong to the least abundant protein classes in the cell. It is therefore fascinating how short the time frame is that they require to home in on their target sites. The underlying search mechanism is called facilitated diffusion and assumes a combination of three-dimensional diffusion in the space around the DNA combined with one-dimensional random walk on it. In this review, we present the current understanding of the facilitated diffusion mechanism and identify questions that lack a clear or detailed answer. One way to investigate these questions is through stochastic simulation and, in this manuscript, we support the idea that such simulations are able to address them. Finally, we review which biological parameters need to be included in such computational models in order to obtain a detailed representation of the actual process.


Assuntos
Simulação por Computador , Difusão Facilitada/fisiologia , Animais , Sítios de Ligação , Humanos , Ligação Proteica , Fatores de Transcrição/metabolismo
18.
Bioinformatics ; 28(11): 1517-24, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22492644

RESUMO

MOTIVATION: Gene activity is mediated by site-specific transcription factors (TFs). Their binding to defined regions in the genome determines the rate at which their target genes are transcribed. RESULTS: We present a comprehensive computational model of the search process of TF for their genomic target site(s). The computational model considers: the DNA sequence, various TF species and the interaction of the individual molecules with the DNA or between themselves. We also demonstrate a systematic approach how to parametrize the system using available experimental data.


Assuntos
Simulação por Computador , DNA/metabolismo , Escherichia coli/metabolismo , Repressores Lac/metabolismo , DNA/química , Difusão Facilitada , Repressores Lac/química , Modelos Químicos , Termodinâmica , Ativação Transcricional
19.
Bioinformatics ; 28(9): 1287-9, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22426343

RESUMO

MOTIVATION: Transcription factors (TFs) are proteins that regulate gene activity by binding to specific sites on the DNA. Understanding the way these molecules locate their target site is of great importance in understanding gene regulation. We developed a comprehensive computational model of this process and estimated the model parameters in (N.R.Zabet and B.Adryan, submitted for publication). RESULTS: GRiP (gene regulation in prokaryotes) is a highly versatile implementation of this model and simulates the search process in a computationally efficient way. This program aims to provide researchers in the field with a flexible and highly customizable simulation framework. Its features include representation of DNA sequence, TFs and the interaction between TFs and the DNA (facilitated diffusion mechanism), or between various TFs (cooperative behaviour). The software will record both information on the dynamics associated with the search process (locations of molecules) and also steady-state results (affinity landscape, occupancy-bias and collision hotspots). AVAILABILITY: http://logic.sysbiol.cam.ac.uk/grip, program and source code


Assuntos
Software , Fatores de Transcrição/metabolismo , Algoritmos , Sequência de Bases , Sítios de Ligação , Simulação por Computador , DNA/química , DNA/genética , DNA/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Regulação da Expressão Gênica , Células Procarióticas/metabolismo , Ligação Proteica , Fatores de Transcrição/química , Fatores de Transcrição/genética
20.
EMBO J ; 30(13): 2719-33, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21602788

RESUMO

The androgen receptor (AR) is a key regulator of prostate growth and the principal drug target for the treatment of prostate cancer. Previous studies have mapped AR targets and identified some candidates which may contribute to cancer progression, but did not characterize AR biology in an integrated manner. In this study, we took an interdisciplinary approach, integrating detailed genomic studies with metabolomic profiling and identify an anabolic transcriptional network involving AR as the core regulator. Restricting flux through anabolic pathways is an attractive approach to deprive tumours of the building blocks needed to sustain tumour growth. Therefore, we searched for targets of the AR that may contribute to these anabolic processes and could be amenable to therapeutic intervention by virtue of differential expression in prostate tumours. This highlighted calcium/calmodulin-dependent protein kinase kinase 2, which we show is overexpressed in prostate cancer and regulates cancer cell growth via its unexpected role as a hormone-dependent modulator of anabolic metabolism. In conclusion, it is possible to progress from transcriptional studies to a promising therapeutic target by taking an unbiased interdisciplinary approach.


Assuntos
Carcinoma/genética , Carcinoma/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/fisiologia , Animais , Sequência de Bases , Sítios de Ligação/genética , Vias Biossintéticas/genética , Carcinoma/patologia , Linhagem Celular Tumoral , Proliferação de Células , Análise por Conglomerados , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Metabolismo/genética , Metabolismo/fisiologia , Camundongos , Modelos Biológicos , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Elementos de Resposta/genética , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...