Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Endocr Soc ; 7(6): bvad062, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37260779

RESUMO

Diabetes rates in the United States are staggering and climbing. Importantly, traditional risk factors fail to completely account for the magnitude of the diabetes epidemic. Environmental exposures, including urban and metropolitan transportation quality, are implicated as contributors to disease. Using data from the county-level Environmental Quality Index (EQI) developed for the United States, we analyzed associations between transportation and air quality environmental metrics with overall diabetes prevalence and control within urban/metropolitan counties in the United States from 2006 to 2012. Additionally, we examined effect modification by race/ethnicity through stratification based on the county-level proportion of minority residents. Last, we applied mixture methods to evaluate the effect of simultaneous poor transportation factors and worse air quality on the same outcomes. We found that increased county-level particulate matter air pollution and nitrogen dioxide along with reduced public transportation usage and lower walkability were all associated with increased diabetes prevalence. The minority proportion of the population influences some of these relationships as some of the effects of air pollution and the transportation-related environment are worse among counties with more minority residents. Furthermore, the transportation and air quality mixtures were found to be associated with increased diabetes prevalence and reduced diabetes control. These data further support the burgeoning evidence that poor environments amplify diabetes risk. Future cohort studies should explore the utility of environmental policies and urban planning as tools for improving metabolic health.

2.
Proc Natl Acad Sci U S A ; 119(22): e2121406119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35622890

RESUMO

In eukaryotes, the origin recognition complex (ORC) is required for the initiation of DNA replication. The smallest subunit of ORC, Orc6, is essential for prereplication complex (pre-RC) assembly and cell viability in yeast and for cytokinesis in metazoans. However, unlike other ORC components, the role of human Orc6 in replication remains to be resolved. Here, we identify an unexpected role for hOrc6, which is to promote S-phase progression after pre-RC assembly and DNA damage response. Orc6 localizes at the replication fork and is an accessory factor of the mismatch repair (MMR) complex. In response to oxidative damage during S phase, often repaired by MMR, Orc6 facilitates MMR complex assembly and activity, without which the checkpoint signaling is abrogated. Mechanistically, Orc6 directly binds to MutSα and enhances the chromatin-association of MutLα, thus enabling efficient MMR. Based on this, we conclude that hOrc6 plays a fundamental role in genome surveillance during S phase.


Assuntos
Reparo de Erro de Pareamento de DNA , Complexo de Reconhecimento de Origem , Fase S , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas MutL/metabolismo , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Ligação Proteica
3.
JCI Insight ; 7(5)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35104249

RESUMO

Hundreds of genetic variants in KCNQ2 encoding the voltage-gated potassium channel KV7.2 are associated with early onset epilepsy and/or developmental disability, but the functional consequences of most variants are unknown. Absent functional annotation for KCNQ2 variants hinders identification of individuals who may benefit from emerging precision therapies. We employed automated patch clamp recordings to assess at, to our knowledge, an unprecedented scale the functional and pharmacological properties of 79 missense and 2 inframe deletion KCNQ2 variants. Among the variants we studied were 18 known pathogenic variants, 24 mostly rare population variants, and 39 disease-associated variants with unclear functional effects. We analyzed electrophysiological data recorded from 9,480 cells. The functional properties of 18 known pathogenic variants largely matched previously published results and validated automated patch clamp for this purpose. Unlike rare population variants, most disease-associated KCNQ2 variants exhibited prominent loss-of-function with dominant-negative effects, providing strong evidence in support of pathogenicity. All variants responded to retigabine, although there were substantial differences in maximal responses. Our study demonstrated that dominant-negative loss-of-function is a common mechanism associated with missense KCNQ2 variants. Importantly, we observed genotype-dependent differences in the response of KCNQ2 variants to retigabine, a proposed precision therapy for KCNQ2 developmental and epileptic encephalopathy.


Assuntos
Epilepsia , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Epilepsia/tratamento farmacológico , Epilepsia/genética , Humanos , Canal de Potássio KCNQ2/genética , Mutação de Sentido Incorreto
4.
Elife ; 92020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33095155

RESUMO

The function of the voltage-gated KCNQ1 potassium channel is regulated by co-assembly with KCNE auxiliary subunits. KCNQ1-KCNE1 channels generate the slow delayed rectifier current, IKs, which contributes to the repolarization phase of the cardiac action potential. A three amino acid motif (F57-T58-L59, FTL) in KCNE1 is essential for slow activation of KCNQ1-KCNE1 channels. However, how this motif interacts with KCNQ1 to control its function is unknown. Combining computational modeling with electrophysiological studies, we developed structural models of the KCNQ1-KCNE1 complex that suggest how KCNE1 controls KCNQ1 activation. The FTL motif binds at a cleft between the voltage-sensing and pore domains and appears to affect the channel gate by an allosteric mechanism. Comparison with the KCNQ1-KCNE3 channel structure suggests a common transmembrane-binding mode for different KCNEs and illuminates how specific differences in the interaction of their triplet motifs determine the profound differences in KCNQ1 functional modulation by KCNE1 versus KCNE3.


Assuntos
Ativação do Canal Iônico/fisiologia , Canal de Potássio KCNQ1/genética , Potenciais da Membrana/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Animais , Células CHO , Cricetulus , Humanos , Canal de Potássio KCNQ1/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...