Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 45(10): 7944-7955, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37886945

RESUMO

Following viral infection, T-cells are crucial for an effective immune response to intracellular pathogens, including respiratory viruses. During the COVID-19 pandemic, diverse assays were required in pre-clinical trials to evaluate the immune response following vaccination against SARS-CoV-2 and assess the response following exposure to the virus. To assess the nature and potency of the cellular response to infection or vaccination, a reliable and specific activity assay was needed. A cellular activity assay based on the presentation of short peptides (epitopes) allows the identification of T cell epitopes displayed on different alleles of the MHC, shedding light on the strength of the immune response towards antigens and aiding in antigen design for vaccination. In this report, we describe two approaches for scanning T cell epitopes on the surface glycoprotein of the SARS-CoV-2 (spike), which is utilized for attachment and entry and serves as an antigen in many vaccine candidates. We demonstrate that epitope scanning is feasible using peptide libraries or computational scanning combined with a cellular activity assay. Our scans identified four CD8 T cell epitopes, including one novel undescribed epitope. These epitopes enabled us to establish a reliable T-cell response assay, which was examined and used in various experimental mouse models for SARS-CoV-2 infection and vaccination. These approaches could potentially aid in future antigen design for vaccination and establish cellular activity assays against uncharacterized antigens of emerging pathogens.

2.
Front Oncol ; 13: 1116328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937426

RESUMO

A major challenge in developing an effective adoptive cancer immunotherapy is the ex-vivo generation of tumor-reactive cells in sufficient numbers and with enhanced cytotoxic potential. It was recently demonstrated that culturing of activated murine CD8+ T-cells on a "Synthetic Immune Niche" (SIN), consisting of immobilized CCL21 and ICAM-1, enhances T-cell expansion, increases their cytotoxicity against cultured cancer cells and suppresses tumor growth in vivo. In the study reported here, we have tested the effect of the CCL21+ICAM1 SIN, on the expansion and cytotoxic phenotype of Tumor Infiltrating Lymphocytes (TIL) from melanoma patients, following activation with immobilized anti-CD3/CD28 stimulation, or commercial activation beads. The majority of TIL tested, displayed higher expansion when cultured on the coated SIN compared to cells incubated on uncoated substrate and a lower frequency of TIM-3+CD8+ cells after stimulation with anti-CD3/CD28 beads. Comparable enhancement of TIL proliferation was obtained by the CCL21+ICAM1 SIN, in a clinical setting that included a 14-day rapid expansion procedure (REP). Co-incubation of post-REP TIL with matching target cancerous cells demonstrated increased IFNγ secretion beyond baseline in most of the TIL cultures, as well as a significant increase in granzyme B levels following activation on SIN. The SIN did not significantly alter the relative frequency of CD8/CD4 populations, as well as the expression of CD28, CD25, several exhaustion markers and the differentiation status of the expanded cells. These results demonstrate the potential capacity of the CCL21+ICAM1 SIN to reinforce TIL-based immunotherapy for cancer patients.

3.
Front Immunol ; 9: 1303, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29942308

RESUMO

Adoptive immunotherapy is based on ex vivo expansion and stimulation of T-cells, followed by their transfer into patients. The need for the ex vivo culturing step provides opportunities for modulating the properties of transferred T-cells, enhancing their antitumor abilities, and increasing their number. Here, we present a synthetic immune niche (SIN) that increases the number and antitumor activity of cytotoxic CD8+ T-cells. We first evaluated the effect of various SIN compositions that mimic the physiological microenvironment encountered by T-cells during their activation and expansion in the lymph node. We found that substrates coated with the chemokine CCL21 together with the adhesion molecule intercellular adhesion molecule 1 significantly increase the number of ovalbumin-specific murine CD8+ T-cells activated by antigen-loaded dendritic cells or activation microbeads. Notably, cells cultured on these substrates also displayed augmented cytotoxic activity toward ovalbumin-expressing melanoma cells, both in culture and in vivo. This increase in specific cytotoxic activity was associated with a major increase in the cellular levels of the killing-mediator granzyme B. Our results suggest that this SIN may be used for generating T-cells with augmented cytotoxic function, for use in cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Quimiocina CCL21/metabolismo , Citotoxicidade Imunológica , Molécula 1 de Adesão Intercelular/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Animais , Biomarcadores , Linhagem Celular Tumoral , Imunoterapia Adotiva , Ativação Linfocitária/imunologia , Camundongos , Neoplasias/patologia , Neoplasias/terapia , Ovalbumina/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T
4.
Blood Adv ; 1(15): 1016-1030, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29296744

RESUMO

Immune processes within the complex microenvironment of the lymph node involve multiple intercellular, cell-matrix, and paracrine interactions, resulting in the expansion of antigen-specific T cells. Inspired by the lymph node microenvironment, we aimed to develop an ex vivo "synthetic immune niche" (SIN), which could effectively stimulate the proliferation of antigen-activated CD4+ T cells. This engineered SIN consisted of surfaces coated with the chemokine C-C motif ligand 21 (CCL21) and with the intercellular adhesion molecule 1 (ICAM1), coupled with the soluble cytokine interleukin 6 (IL-6) added to the culture medium. When activated by ovalbumin-loaded dendritic cells, OT-II T cells growing on regular uncoated culture plates form nonadherent, dynamic clusters around the dendritic cells. We found that functionalization of the plate surface with CCL21 and ICAM1 and the addition of IL-6 to the medium dramatically increases T-cell proliferation and transforms the culture topology from that of suspended 3-dimensional cell clusters into a firm, substrate-attached monolayer of cells. Our findings demonstrate that the components of this SIN collectively modulate T-cell interactions and augment both the proliferation and survival of T cells in an antigen-specific manner, potentially serving as a powerful approach for expanding immunotherapeutic T cells.

5.
J Autoimmun ; 54: 100-11, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24951031

RESUMO

In this article, we discuss novel synthetic approaches for studying the interactions of cells with their microenvironment. Notably, critical cellular processes such as growth, differentiation, migration, and fate determination, are tightly regulated by interactions with neighboring cells, and the surrounding extracellular matrix. Given the huge complexity of natural cellular environments, and their rich molecular and physical diversity, the mission of understanding "environmental signaling" at a molecular-mechanistic level appears to be extremely challenging. To meet these challenges, attempts have been made in recent years to design synthetic matrices with defined chemical and physical properties, which, artificial though they may be, could reveal basic "design principles" underlying the physiological processes. Here, we summarize recent developments in the characterization of the chemical and physical properties of cell sensing and adhesion, as well as the design and use of engineered, micro- to nanoscale patterned and confined environments, for systematic, comprehensive modulation of the cells' environment. The power of these biomimetic surfaces to highlight environmental signaling events in cells, and in immune cells in particular, will be discussed.


Assuntos
Materiais Biomiméticos , Biomimética , Microambiente Celular/imunologia , Transdução de Sinais/imunologia , Engenharia Tecidual , Animais , Adesão Celular/imunologia , Humanos
6.
J Am Heart Assoc ; 2(5): e000253, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-24080908

RESUMO

BACKGROUND: Human mesenchymal stromal cells (hMSCs) from adipose cardiac tissue have attracted considerable interest in regard to cell-based therapies. We aimed to test the hypothesis that hMSCs from the heart and epicardial fat would be better cells for infarct repair. METHODS AND RESULTS: We isolated and grew hMSCs from patients with ischemic heart disease from 4 locations: epicardial fat, pericardial fat, subcutaneous fat, and the right atrium. Significantly, hMSCs from the right atrium and epicardial fat secreted the highest amounts of trophic and inflammatory cytokines, while hMSCs from pericardial and subcutaneous fat secreted the lowest. Relative expression of inflammation- and fibrosis-related genes was considerably higher in hMSCs from the right atrium and epicardial fat than in subcutaneous fat hMSCs. To determine the functional effects of hMSCs, we allocated rats to hMSC transplantation 7 days after myocardial infarction. Atrial hMSCs induced greatest infarct vascularization as well as highest inflammation score 27 days after transplantation. Surprisingly, cardiac dysfunction was worst after transplantation of hMSCs from atrium and epicardial fat and minimal after transplantation of hMSCs from subcutaneous fat. These findings were confirmed by using hMSC transplantation in immunocompromised mice after myocardial infarction. Notably, there was a correlation between tumor necrosis factor-α secretion from hMSCs and posttransplantation left ventricular remodeling and dysfunction. CONCLUSIONS: Because of their proinflammatory properties, hMSCs from the right atrium and epicardial fat of cardiac patients could impair heart function after myocardial infarction. Our findings might be relevant to autologous mesenchymal stromal cell therapy and development and progression of ischemic heart disease.


Assuntos
Células-Tronco Mesenquimais , Miocárdio/citologia , Pericárdio/citologia , Animais , Células Cultivadas , Coração , Humanos , Transplante de Células-Tronco Mesenquimais , Camundongos , Infarto do Miocárdio/cirurgia , Isquemia Miocárdica/etiologia
7.
J Cardiovasc Pharmacol Ther ; 18(1): 78-86, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22894882

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) improve tissue repair but their mechanism of action is not fully understood. We aimed to test the hypothesis that MSCs may act via macrophages, and that specifically, human cardiac adipose tissue-derived mesenchymal stromal cells (AT-MSCs) can polarize human macrophages into a reparative, anti-inflammatory (M2) phenotype. Methods and RESULTS: We isolated and grew AT-MSCs from human cardiac adipose tissue obtained during cardiac surgery. Macrophages were grown from CD14(+) monocytes from healthy donor blood and then cocultured with AT-MSCs, with and without transwell membrane, for 1 to 14 days. In response to AT-MSCs, macrophages acquired a star-shaped morphology, typical of alternatively activated phenotype (M2), and increased the expression of M2 markers CD206(+), CD163(+), and CD16(+) by 1.5- and 9-fold. Significantly, AT-MSCs modified macrophage cytokine secretion and increased the secretion of anti-inflammatory and angiogenic cytokines: interleukin (IL)-10 (9-fold) and vascular endothelial growth factors (3-fold). Moreover, AT-MSCs decreased macrophage secretion of inflammatory cytokines such as IL-1α (2-fold), tumor necrosis factor α (1.5-fold), IL-17 (3-fold), and interferon gamma (2-fold). Remarkably, the interaction between AT-MSCs and macrophages was bidirectional and macrophages enhanced AT-MSC secretion of typical M2 inducers IL-4 and IL-13. Notably, AT-MSCs decreased macrophage phagocytic capacity. Finally, IL-6 mediates the M2 polarization effect of AT-MSCs on macrophages, by increasing M2-associated cytokines, IL-10 and IL-13. CONCLUSIONS: Human cardiac AT-MSCs can polarize human macrophages into anti-inflammatory phenotype. Our findings suggest a new mechanism of action of AT-MSCs that could be relevant to the pathogenesis and treatment of myocardial infarction, atherosclerosis, and various cardiovascular diseases.


Assuntos
Tecido Adiposo/citologia , Comunicação Celular , Macrófagos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Miócitos Cardíacos/fisiologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/terapia , Polaridade Celular , Citocinas/metabolismo , Humanos , Fagocitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...