Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Divers ; 27(4): 1675-1687, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36219381

RESUMO

Optimizing the pharmacokinetics (PK) of a drug candidate to support oral dosing is a key challenge in drug development. PK parameters are usually estimated from the concentration-time profile following intravenous administration; however, traditional methods are time-consuming and expensive. In recent years, quantitative structure-pharmacokinetic relationship (QSPKR), an in silico tool that aims to develop a mathematical relationship between the structure of a molecule and its PK properties, has emerged as a useful alternative to experimental testing. Due to the complex nature of the various processes involved in dictating the fate of a drug, the development of adequate QSPKR models that can be used in real-world pre-screening situations has proved challenging. Given the crucial role played by a molecule's ionization state in determining its PK properties, this work aims to build predictive QSPKR models for PK parameters in humans using an ionization state-based strategy. We divide a high-quality dataset into clusters based on ionization state at physiological pH and build global and ion subset-based 'local' models for three major PK parameters: plasma clearance (CL), steady-state volume of distribution (VDss), and half-life (t1/2). We use a robust methodology developed in our lab entitled 'EigenValue ANalySis' that accounts for the stereospecificity in drug disposition and use the support vector machine algorithm for model building. Our findings suggest that categorizing compounds in accordance with ionization state does not result in improved QSPKR models. The narrow ranges in the endpoints along with redundancies in the data adversely affect the ion subset-based QSPKR models. We suggest alternative approaches such as elimination route-based models that account for drug-transporter interactions for CL and chemotype-specific QSPKR for VDss.


Assuntos
Algoritmos , Relação Quantitativa Estrutura-Atividade , Humanos , Preparações Farmacêuticas , Modelos Biológicos
2.
J Biomol Struct Dyn ; 34(2): 384-98, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25854164

RESUMO

The present work exploits the potential of in silico approaches for minimizing attrition of leads in the later stages of drug development. We propose a theoretical approach, wherein 'parallel' information is generated to simultaneously optimize the pharmacokinetics (PK) and pharmacodynamics (PD) of lead candidates. ß-blockers, though in use for many years, have suboptimal PKs; hence are an ideal test series for the 'parallel progression approach'. This approach utilizes molecular modeling tools viz. hologram quantitative structure activity relationships, homology modeling, docking, predictive metabolism, and toxicity models. Validated models have been developed for PK parameters such as volume of distribution (log Vd) and clearance (log Cl), which together influence the half-life (t1/2) of a drug. Simultaneously, models for PD in terms of inhibition constant pKi have been developed. Thus, PK and PD properties of ß-blockers were concurrently analyzed and after iterative cycling, modifications were proposed that lead to compounds with optimized PK and PD. We report some of the resultant re-engineered ß-blockers with improved half-lives and pKi values comparable with marketed ß-blockers. These were further analyzed by the docking studies to evaluate their binding poses. Finally, metabolic and toxicological assessment of these molecules was done through in silico methods. The strategy proposed herein has potential universal applicability, and can be used in any drug discovery scenario; provided that the data used is consistent in terms of experimental conditions, endpoints, and methods employed. Thus the 'parallel progression approach' helps to simultaneously fine-tune various properties of the drug and would be an invaluable tool during the drug development process.


Assuntos
Antagonistas Adrenérgicos beta/farmacocinética , Simulação por Computador , Desenho de Fármacos , Receptores Adrenérgicos beta/metabolismo , Antagonistas Adrenérgicos beta/química , Antagonistas Adrenérgicos beta/toxicidade , Meia-Vida , Humanos , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...