Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angle Orthod ; 91(1): 111-118, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33289799

RESUMO

OBJECTIVES: To investigate the effects of exendin-4 on orthodontic tooth movement distance, root resorption, and expression levels of osteoclast-related cytokines in a mouse model. MATERIALS AND METHODS: A 10-g NiTi coil spring was placed between the anterior alveolar bone and upper left first molar of 8-week-old male C57BL/6 mice. Twenty microliters of exendin-4 solution (containing 0.2 µg, 4 µg, or 20 µg exendin-4) or phosphate-buffered saline (PBS) were injected on the buccal side of the upper left first molar at 2-day intervals (4 mice per group). Mice were sacrificed on day 12; silicone impressions were taken to record tooth movement distance. The left maxillae of the PBS and 20 µg exendin-4 groups were also excised for histological analysis and quantitative reverse transcription polymerase chain reaction analysis. RESULTS: Orthodontic tooth movement distance was smaller in the 20 µg exendin-4 group than in the PBS group (P < .01). Compared with the PBS group, the 20 µg exendin-4 group showed lower osteoclast number (P < .05), odontoclast number (P < .05), and root resorption surface percentage (P < .05). Relative to maxillae with PBS injections, maxillae with 20 µg exendin-4 injections had lower receptor activator of nuclear factor kappa-B ligand (RANKL) mRNA expression (P < .05), TNF-α mRNA expression (P < .05), and RANKL/osteoprotegerin (OPG) ratio (P < .01). There were no differences in the expression of OPG mRNA. CONCLUSIONS: Exendin-4 inhibits orthodontic tooth movement. Therefore, additional attention is needed for orthodontic patients who receive exendin-4 for diabetes treatment. GLP-1 receptor may be a treatment target for patients with severe root resorption.


Assuntos
Diabetes Mellitus , Medicina , Reabsorção da Raiz , Animais , Exenatida , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos , Ligante RANK , Técnicas de Movimentação Dentária
2.
Biomed Res Int ; 2020: 7189084, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32923485

RESUMO

OBJECTIVES: Dipeptidyl peptidase-4 (DPP-4) inhibitors are used as a treatment for type 2 diabetes mellitus and have also recently been applied to enhance bone quality and density, and increase the expression of bone markers. This study aimed to investigate the effect of a DPP-4 inhibitor on orthodontic tooth movement (OTM) and related root resorption in a mouse model. MATERIALS AND METHODS: Mice were randomly divided into three groups: those undergoing OTM with the addition of a DPP-4 inhibitor (30 µg), those undergoing OTM and receiving phosphate-buffered saline (PBS), and those without force loading (control group). OTM was achieved by means of a nickel-titanium closed coil spring that moved the first molar in a mesial direction for 12 days. The distance of OTM was measured using silicone impression. Maxillae were removed for histological analysis or real-time PCR analysis. RESULTS: The distance of OTM and the number of osteoclasts were significantly decreased after administration of the DPP-4 inhibitor, which also significantly suppressed the number of odontoclasts and root resorption after OTM. Furthermore, the mRNA expression of tumour necrosis factor-α (TNF-α) and the receptor activator of nuclear factor kappa-B ligand (RANKL) were decreased in DPP-4 inhibitor-treated mice compared with those receiving PBS and control animals. CONCLUSION: The DPP-4 inhibitor inhibited tooth movement and associated root resorption by blocking the formation of osteoclasts and odontoclasts, respectively. It also appeared to inhibit osteoclastogenesis and odontoclastogenesis by suppressing the expression of TNF-α and/or RANKL.


Assuntos
Inibidores da Dipeptidil Peptidase IV/farmacologia , Dente Molar/efeitos dos fármacos , Reabsorção da Raiz/tratamento farmacológico , Raiz Dentária/efeitos dos fármacos , Animais , Masculino , Maxila , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Dente Molar/metabolismo , Níquel/farmacologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Ligante RANK/metabolismo , Reabsorção da Raiz/metabolismo , Titânio/farmacologia , Técnicas de Movimentação Dentária/métodos , Raiz Dentária/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...